
AFIT/GCS/ENG/99M-12

Extensible Multi-Agent System for
Heterogeneous Database Association Rule

Mining and Unification.

THESIS
Christopher G. Marks

Captain, USAF

AFrr/GCS/ENG/99M-12

Approved for public release, distribution unlimited

19990409 094

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

8 Mar 1999
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

Extensible Multi-Agent System for Heterogeneous Database Association Rule Mining
and Unification

6. AUTHOR(S)

Christopher G. Marks, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street
WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM
Capt. Alex Kilpatrick
WPAFB OH 45433
(703) 696-6565

11. SUPPLEMENTARY NOTES

Maj. Scott A. DeLoach
(937) 255
Scott. DeLoach@afit.af.mil

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99M-12

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Probabilities, Expert System, Knowledge, and Inference (PESKI) System uses the data mining of association rules to fill
incompleteness in the knowledge of an expert system. The rules are mined from transactional data sources and then
incorporated using an existing link to PESKI. One method of providing a system that will easily allow new data sources to be
added is using an information gathering agent-based system. This research first develops a methodology for designing and
creating a multi-agent system. It then applies this methodology to design a platform independent means of data mining data
sources of any format. The use of agents allows a format specific agent to be used for every data source. The system
performs the data mining, then unifies the association rules to present one list of unique results to the parent application.

14. SUBJECT TERMS

Multi-Agent Systems, association rules, data mining, information systems

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

105
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government

AFIT/GCS/ENG/99M-12

Extensible Multi-Agent System for

Heterogeneous Database Association Rule

Mining and Unification.

THESIS

Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Systems)

Christopher G. Marks, B. S.

Captain, USAF

March, 1999

Approved for public release, distribution unlimited.

Acknowledgments

Few are as affected by thesis work as those who are closest to you. My thanks goes to

my friends and family who shared the burden of the workload without complaining,

especially Kirstan who dealt with my work schedule and mood swings. Most importantly, I'd

like to thank God who gives all of us the patience and ability to fulfill the tasks presented to

us. Through him all things are possible.

u

Table of Contents

Acknowledgments ii

Table of Contents iii

List of Figures v

List of Tables vii

I. Introduction 1

1.1 Background 2

1.2 Problem Statement 3

1.3 Thesis Overview 4

II. Background 5

2.1 Overview 5

2.2 Data Mining 5

2.3 Heterogeneous Sources 8

2.4 Agents 9

2.5 Agent-Based Information Gathering Frameworks 15

2.6 Common Information Retrieval System Architecture : 22

2.7 Multi-Agent Development Frameworks 24

2.8 Summary 26

III. Methodology 28

3.1 Overview 28

3.2 Methodology 28

3.3 Problem Analysis 29

3.4 Environmental Analysis 30

3.5 Determine Agents and Development Framework 32

iii

3.6 Identify Lines of Communication and Data Structures 34

3.7 Detailed Agent Design 35

3.8 Summary 36

HU. Proposed Agent Architecture 37

4.1 Overview 37

4.2 Problem Analysis 37

4.3 Environment Analysis 38

4.4 Determine Agents and Framework 39

4.5 Define Agent Conversations and Data Structures 50

4.6 Detailed Agent Design 68

4.7 Summary 77

V. Implementation 78

5.1 Overview 78

5.2 Extensibility 78

5.3 Instantiating a New Data Analysis Agent 80

5.4 Actual Implementation 83

5.5 Summary 87

VI. Conclusions 89

6.1 Overview 89

6.2 Results 89

6.3 Accomplishments 90

6.4 Work Not Implemented 92

6.5 Future Work 92

6.6 Summary 93

IV

List of Figures

Figure 1 Sample BKB Relationship Representation 3

Figure 2 InfoSleuth Architecture Layers 18

Figure 3 TSMMIS Architecture 21

Figure 4 Methodology Flow Diagram 29

Figure 5 Sample Analysis 30

Figure 6 Sample Problem Analysis 31

Figure 7 Determining Agents and Framework 33

Figure 8 Sample Problem Framework Analysis 34

Figure 9 Sample Conversation Diagram 35

Figure 10 Domain-Level Problem Analysis Diagram 38

Figure 11 Environmental Problem Analysis Diagram 39

Figure 12 Overall Agent System Diagram 40

Figure 13 System Class Diagram 41

Figure 14 Generic STD for a Conversation 52

Figure 15 Agent to Broker Conversation 54

Figure 16 Agent to Registration Conversation 55

Figure 17 Registration to Agent Conversation 55

Figure 18 Registration to Broker Conversation 56

Figure 19 Registration to Ontology Conversation 56

Figure 20 User to Task Conversation 57

Figure 21 Task to User Conversation 59

Figure 22 Task to Broker Conversation 60

Figure 23 Task to Data Analysis Conversation 60

Figure 24 Task to Unification Conversation 61

v

Figure 25 Broker to Registration Conversation 62

Figure 26 Broker to Requesting Agent Conversation 63

Figure 27 Broker to Ontology Conversation 63

Figure 28 Ontology to Broker Conversation 65

Figure 29 Ontology to Registration Conversation 65

Figure 30 Data Analysis to Task Agent 66

Figure 31 Unification to Task Conversation 67

vi

List of Tables

Table 1 JAFMAS versus JATLite 50

Vll

Extensible Multi-Agent System for Heterogeneous Database

Association Rule Mining and Unification

/. Introduction

With the ever-increasing availability of information, the methods of encoding and storing

the information grows as well [KA97][SING98]. Available information sources include

traditional databases such as relational, flat files, knowledge bases, programs, object-oriented,

text documents, HTML, and proprietary formats that are some variant of a traditional format

[KA97]. As the number of information sources grows, the problem of how to combine these

distributed, heterogeneous data repositories becomes more and more critical. Even within one

organization or company, this information can be stored in separate geographic locations and in

varying formats. When this is coupled with rising storage capacities and the dropping cost of

gathering information, we are left with an overwhelming amount of data.

One method of extracting useful trends from data is through data mining association

rules. In this research we present a methodology and a tool for mining association rules from

multiple heterogeneous data sources and then unifying the results for future incorporation into a

knowledge base.

The main purpose of this research is to provide an extensible architecture that provides

flexibility in the addition of a data source for data mining operations. Data mining and

association rules are reviewed first. The relatively new field of agents and multi-agent systems is

then reviewed. A methodology for developing a multi-agent system is presented in Chapter 3.

Application of this methodology to the problem presented here is detailed in Chapter 4. Chapter

5 discusses and provides an implementation of extending the system for a new data source.

Finally, conclusions and future work is discussed in Chapter 6.

1.1 Background

Research by Capt. Daniel Stein has shown how data mining association rules could be

used to repair knowledge base incompleteness. This work was in support of the Probabilities,

Experts System, Knowledge, and Inference (PESKI) System, an integrated framework for expert

system development [STEIN96]. This system utilizes a knowledge representation known as a

Bayesian Knowledge Base (BKB) to provide flexibility and an ease of understanding that is

lacking in many representation schemes [STEIN96]. Stein has shown how a goal-directed data

mining approach can automate the process of automatically solving incompleteness in a BKB

with the implementation of DBMiner. Association rules can be used to discover one or more

relationships that are missing from a BKB without human intervention. To date, this

implementation supports only one format of knowledge base and is thus limited.

PESKI is the physical realization of an integrated knowledge-based system framework

that combines the functions of natural language interface, inferencing, explanation and

interpretation, and knowledge acquisition into a single consolidated application

[STEI6][STEI20]. As mentioned above, the knowledge representation scheme used for PESKI is

the BKB. BKBs utilize Bayesian probabilities to represent the statistical causal relationship of

one random variable to another. Figure 1 represents a single piece of information in BKB format.

It represents the fact that given it is sunny, there is a 75% chance the sidewalk is dry. The PESKI

System utilizes this representation for inferencing over the knowledge base.

75%

Figure 1 Sample BKB Relationship Representation

1.2 Problem Statement

The problem this research is focused on is providing an extensible system that can data

mine association rules from data sources of heterogeneous formats. Extensibility in this case

means a system that allows easy addition of new data sources. By providing the option of

heterogeneous data sources, the system allows for all available formats - flat-file, relational, and

object-oriented for example. The system should also allow for results to be utilized by an

external application, such as PESKI.

This work defines an architecture that not only allows mining data sources of multiple

formats, but also allows extensibility for future formats. It also presents a methodology for

unification of association rules prior to incorporation in a BKB. It uses an existing agent

development tool to establish a multi-agent based framework and define the communications

between those agents. The framework is designed to accept a request from PESKI for one of

three possible data mining operations. These operations are discussed in more detail in Chapter

4. Once the system accepts the request, it determines which data sources can fulfill the request

and tasks the agents responsible for those sources to begin data mining. Once results have been

obtained, they are unified to eliminate redundant or conflicting results and returned to PESKI.

Two new data source formats are introduced into the PESKI schema and they are mined for

association rules, the results unified into a unique list of results, and then passed back to PESKI

for incorporation into the BKB. The process is automated and uses existing message passing

formats to communicate with PESKI. One limiting assumption is to mine association rules based

on the research by Capt. Stein, as opposed to other methods of acquiring necessary support

conditions for the states.

1.3 Thesis Overview

Chapter 2 provides a review of literature and research that is relevant to the problem

including data mining, agents, and existing information retrieval systems. In Chapter 3, a

methodology is specified that moves from problem definition to detailed design. The application

of the agent development framework and methodology to the problem presented here is covered

in Chapter 4. Chapter 5 discusses how the resulting architecture could be extended to include

other data mining algorithms and data source formats and includes an implementation of anew

source. Finally, Chapter 6 looks at the conclusions of the research and future work that may be

accomplished.

17. Background

2.1 Overview

This chapter reviews the different technologies and literature that is related to this

research. Section 2.2 provides a detailed explanation of what data mining and association rules

are as well as how data mining of association rules is accomplished in general. This research is

focused on how this can be accomplished over heterogeneous data sources, which are described

in Section 2.3, along with some of the problems inherent in data mining heterogeneous sources.

Section 2.4 defines the term agent, and details various agent attributes and the categories of

agents most commonly used. The next section reviews existing projects that focus on the use of

agents for information retrieval tasks over heterogeneous data sources. The common architecture

used by these projects is outlined and discussed in Section 2.6. Finally, Section 2.7 covers

several multi-agent development frameworks.

2.2 Data Mining

Data mining is a broad term that describes the search to extract some meaningful

information from data that is unformatted and either unstructured or partially structured [RA95].

Similarly, Fayyad et. al. described it as "The nontrivial process identifying valid, novel,

potentially useful, and ultimately understandable patterns in data" [FU95]. Data mining is also

known as knowledge discovery, knowledge extraction, information harvesting, data archeology,

and data pattern processing. Although most algorithms provide some unique implementation of

each phase, there are several common steps to achieve the goal of identifying patterns in data.

The first step in data mining is data cleaning, or pre-processing. All input data must meet

certain conditions to ensure optimal performance including:

1. The data must be in a usable form.

2. There must be sufficient data to derive a solution.

The next step is data reduction. Data reduction eliminates those variables that are not of

interest to the problem domain. Variables that are not of interest are termed i non-usefuV

variables. The data mining process is time consuming and eliminating such non-useful variables

may provide some speedup. The third step is to choose a data mining goal. The goal of the data

mining process is largely based on the application in which the results will be used. Some typical

application goals include classification, regression, clustering, and summarization [FU95]. This

background and the subsequent implementation will focus on link analysis or association rule

data mining (see Section 2.2.1).

Once a goal is chosen, a data mining algorithm must be selected. Selecting the methods

used for searching for the patterns is critical. There are different and more efficient algorithms

depending on the goal, as well as the format of the data. The next step is to perform the actual

data mining. This is simply executing the algorithm chosen on the processed data. Finally, once

the data is mined, the mined patterns must be interpreted. This may include a return to previous

steps to refine the results or focus the search on other areas.

One popular goal of this process is to find trends in the data that show associations

between domain elements. This is generally focused on transactional data such as a database of

purchases at a store. This goal is known as association rules and is described in more detail next.

2.2.1 Association Rules

An association shows some relationship between two values in the form of an

implication (X => Y). An association rule is an association in which one or more items in the

antecedent (X) of an implication is correlated with one or more items in the consequent (Y) with

some acceptable level of confidence and support [SA96]. The support for the rule X => Y is the

conditional probability that a transaction (database entry) contains X, given that it contains Y.

The confidence is the percentage of all transactions with X that also include Y. An example of

this type of rule is the statement that in 90% of transactions in which chips and dip were

purchased, soda was also purchased, and 3% of all transactions contain all three items. The

antecedent of this rule (X) consists of chips and dip and the consequent (Y) is soda. The 90%

represents the confidence factor of this rule and the 3% is the support for the rule. The rule can

then be specified as chips A dip => soda. Both the antecedent and consequent can have sets of

items, or can be a single item.

The algorithms for mining association rules generally follow three main steps [SA95].

First, the database is scanned for all itemsets, or sets of items whose support is greater than some

user specified minimum. Those itemsets meeting the minimum support are called frequent

itemsets. The second step in most algorithms is to use the frequent itemsets to generate the

desired rules based on confidence levels. This can be accomplished by breaking the itemsets into

their individual components and establishing relationships between them. The general idea is that

if A, B, and C are frequent items, then it can be determined that A A B => C if the support for the

relation meets the minimum support and confidence levels. Finally, all uninteresting rules are

pruned (removed) from the resulting rules. In the context of data mining, uninteresting refers to

any rule that the user or expert system does not need or is not useful. These steps outline a general

approach, and as such, there are some common problems.

Despite the relatively straightforward mining of association rules and even after pruning,

the usefulness of the results is sometimes questionable. This is largely due to two main reasons

[SA96]. First, most association rule mining algorithms use generic criteria to prune uninteresting

rules. They do not consider the domain of the problem and can eliminate potentially important or

useful rules. Second, rules are presented in a disjoint manner, without regard to relationship

between them. This can place the burden of finding the truly useful rules on the user. Again, this

is related to the problem of domain independence.

Research focusing on more specific algorithms shows how this general process can be

refined to eliminate some of these problems and help optimize an otherwise I/O intensive process.

There are algorithms that focus on the types of association rules mined, as well as those focused

on the format of the database. This process is focused on the mining of an individual data source.

Unfortunately within a domain of interest the data sources may be of varying formats and

different locations. This is discussed along with the impact on the traditional data mining theory.

2.3 Heterogeneous Sources

As mentioned before, the growing availability of information has led to multiple formats

and methods of encoding and storing the information. The decision on which format to use is

largely based on the needs of the users and the structure of the data. Data mining becomes an

issue as the associations that exist in the various heterogeneous sources may be of interest. More

importantly, if the data in the various sources is related, the association rules mined may be

related and can be integrated.

Research has uncovered several problems with the integration of distributed sources in

similar, as well as heterogeneous formats. Singh mentions several of these that must be

considered when unifying such data [SING98]:

1. Different sources can use different words for the same object.

2. Different sources can use different words for similar concepts.

3. Information is typically created to serve a local purpose and often omits parts that

are always the same in the local context. This information is often essential to

remove ambiguity at a higher level than the local source.

The problem associated with integration of the data from heterogeneous sources has

driven a multitude of projects. One promising approach is to provide access to a large number of

information sources organized into a network of information agents [KA97]. By evaluating

agents and the proposed uses in data mining, we can get a better idea of how they can be used to

solve the problems presented above.

2.4 Agents

The term agent has been used to describe a multitude of software from simple batch

processing to systems displaying intelligence, social ability, and pro-activeness [BRAD98].

Because there is a lack of standard definition, any research surrounding agents must clearly spell

out how they define the term within the scope ofthat research. There are some generally agreed

upon definitions or qualities of an agent that are discussed in Section 2.4.1, but even they are

subject to debate. This in turn leads to questions over the definition of individual agent types as

well. To avoid confusion, the agent classes are discussed in Section 4.2.2 and the agent type

definitions used by this research are explained in Section 2.4.3. Finally, Section 2.4.4 provides an

overview of agent communication and the importance of speech acts.

2.4.1 Definition

It is because agents are relatively new and encompass a wide variety of work that it is

difficult for a standard definition to be agreed upon. One researcher went as far as saying

[NWA96]: "We have as much chance of agreeing on a consensus definition for the word agent as

AI researchers have of arriving at one for artificial intelligence itself- nil!"

A definition many researchers find acceptable is one provided by Shoham. Shoham

defines an agent as a software entity that continuously and autonomously operates in an

environment that may be occupied by other agents and processes [SH097]. This is more

accepted partly because it is a very high level and general definition. More detailed definitions

such as the one presented next are the subject of the debates surrounding agents.

Woolridge and Jennings distinguish two general uses of the term agent: one is a weak

usage, the other stronger and potentially more contentious [WJ95]. They contend a hardware or

software based computer system with four key properties can be weakly classified as an agent.

First it must be autonomous. An autonomous agent can operate without the direct intervention of

humans or others, while exercising some kind of control over their actions and internal state. The

internal state and goals should drive the agent to move its autonomous actions towards

completion of the user's or system's goals.

Next is social ability or the ability to interact with other agents (or humans) by way of

some agent-communication language. Nwana claims this cooperation is "paramount: it is the

raison dietre for having multiple agents" [NWA96]. Without cooperation or communication, the

benefit of having multi-agent systems is lost. Third, an agent must be reactive. A reactive agent

can perceive its environment (which can be the physical world, a user through a graphical user

interface, a collection of other agents, the Internet, or some combination of these) and respond in

a timely fashion to changes that occur.

The last quality is proactiveness. By being proactive an agent does not simply act in

response to environmental changes, but is able to exhibit goal-directed behavior by taking some

initiative. Some have classified this attribute as a part of autonomy and do not consider it unique

[NWA96].

10

This weak notion of agency is used as the basis for each project presented in this chapter.

The properties are not strict guidelines on which to base agent classification. However, as Dr.

Hyacinth Nwana wrote, these are attributes "which agents should exhibit" [NWA96]. As

mentioned, there is a more contentious, stronger notion of agency, sometimes termed secondary

attributes.

In this stronger notion of agency, it is quite common to characterize an agent using

mentalistic notions, such as knowledge, belief, intention, and obligation as well as emotional

aspects [SH097][BATES]. Characterizing an agent using this stronger notion can include

properties such as mobility, veracity, benevolence and rationality.

One of the more common secondary attributes is that of mobility. Mobility is the ability

of an agent to move around in an electronic network, whether it is the Internet or a LAN

[BRAD97]. Veracity is the assumption that an agent will not knowingly communicate false

information. It is often useful to instill this attribute in a closed system of agents. Next is

benevolence, the assumption that agents do not have conflicting goals and will perform the tasks

asked of them. Finally is the attribute of rationality, or the assumption that an agent will act in

order to achieve it goals and will not act in a way that would prevent its goals from being

achieved.

These attributes are not an exhaustive guide to agent attributes, but display the wide

range of potential attributes and traits any single agent can have. Various research may define

agents differently though they seem to perform similar tasks. As agents are developed that have

one or some of these traits, general classes begin to form based on which traits are used.

2.4.2 Classes of Agents

Agents that use one or more of the traits above have begun to be grouped into high level

classes. These "Agent Classes" are not agreed upon standards, but rather commonly used

11

classifications. The following detail the more common classifications according to Nwana

[NWA96]

Most widely accepted are Autonomous Agents. These agents can sense and act

autonomously in an environment. Although they are autonomous, their actions work towards a

goal. The environment can be simple and static or complex and dynamic [WJ95].

Information Agents are agents that can access, retrieve, and manipulate information

obtained from any number of information sources. They also can answer queries about the

information that they can access [WJ95].

Another common agent is an Intelligent Agent. These are agents that act on the behalf of

the user or another program to carry out a set of operations. They do so with some degree of

independence and autonomy.

Interface Agents are agents that support and provide assistance to a user through

observing and monitoring the user's actions in an interface. The agent learns from the actions

and suggests or implements more efficient or easier ways of accomplishing tasks.

Collaborative Agents rely on the social ability of agents in any system to cooperate and

autonomously perform tasks for the user. They have some common interface language in order to

cooperate and communicate with other agents.

Finally Mobile Agents are capable of movement between computers across a local area

network (LAN), wide-area network (WAN), or any other communication medium. Typically

they gather information for a user and report results by either traveling back to the user or

transmitting them to the user.

Again, this is not an exhaustive list of agent classes, but rather some of the most widely

used and agreed upon generalizations. Some other classes of agents that are not explicitly

covered here are hybrid agents, reactive agents, behavioral agents, and entertainment agents

[BRAD97]. Additionally, this list is not mutually exclusive. For instance, a mobile agent can be

intelligent and collaborative as well.

12

2.4.3 Information Retrieval Agents

To this point this chapter has reviewed the definition of an agent in Section 2.4.1

providing four properties that can define an agent, as well as several secondary attributes.

Different combinations of these properties yield several classes of agents that are discussed in

Section 2.4.2. Even within these classes there exist multiple agent types. This section covers

those that can be grouped under the information agent class.

Information agents are agents whose goal is "to provide information and expertise on a

single topic by drawing on relevant information from other information agents" [KAH94].

Systems designed using such agents allow an abstraction of each heterogeneous source to be

made and a common interface defined [KAH94]. The projects discussed next in Section 2.5 use

these agents or forms of these agents in different architectures to perform heterogeneous

information retrieval. Because of the multitude of possible definitions that exist in literature, the

agent definitions presented below will be considered standard for this research. This list is far

from complete and others have mentioned several other agents and offer different definitions for

these general categories.

A User Agent accepts queries by the user and provides an interface into outside

applications. The agent must understand outside data formats and be capable of converting them

into a format other agents can understand [KA97]. It also is responsible for displaying results to

the user. An Ontology Agent maintains and provides overall knowledge of ontologies (the

domain of an agent) and answers queries about the ontologies. It may simply store the ontology

as given, or it may be as advanced as to be able to use semantic reasoning to determine the

applicability of a domain to any particular data mining request [NWA96]. Another common

agent is a Broker Agent. A Broker Agent maintains all information on the capabilities of

individual agents. It also responds to queries from agents as to where to route specific requests.

13

In general, any new agents in a system using a Broker Agent must advertise their capabilities

through the broker in order to become a part of the agent system. A Resource Agent provides the

map from the common ontology to a specific database schema and is knowledgeable about the

language required to interface with the resource. This agent is critical to any information retrieval

system [SHOH97]. A Data Analysis Agent is a Resource Agent specialized for data

analysis/mining methods. It is mentioned separately from the Resource Agent as it is becoming

more commonly used in agent systems. A Task Execution Agent coordinates the execution of

high-level information-gathering subtasks required to fulfill scenarios. It remains in close contact

with the Broker Agent to determine what agents in the system are capable of fulfilling any given

task, and then tasking those agents it deems useful [SHOH97].

The definitions and individual agent functions begin to show how the agents may be

useful and interact with each other. Not every system may require all agents or may use agents in

a different capacity. In order to see how they can be utilized to fulfill a system goal, several of the

key agent-based information retrieval systems are presented.

One common property of most agents is the ability to communicate with other agents.

While some agents can perform their goals without this, most multi-agent systems rely on the

ability of agents to communicate to fulfill their goals.

2.4.4 Agent Communication (Speech-Act)

Multi-agent systems rely on the ability of individual agents to communicate with each

other to fulfill system goals. By nature, multi-agent systems are generally distributed, making

interaction more difficult. Interaction in multi-agent system has two key components. First is the

language or interaction protocol, and second is the use of performatives.

In a conversation-centric system, the actions of an agent are driven by the

communications it has with other agents in the system [CHAU97]. When dealing with

14

distributed agents, it is important to develop a common language that any agent can understand.

The use of a common language ensures that any new agent can receive a message, and based on

the language protocol in use, extract the information it requires. This is accomplished through a

common message format. A common format allows agents to interface with other agents

regardless of the agent's internal structure [CHAU97].

Once a common communications protocol has been established, performatives must be

developed that can give receiving agents direction or direct agent actions towards a system goal.

As such, performatives are the speech-act component of the language [CHAU97]. Performatives

are specific to each system and are dependent on the functions and goals of that system. For

instance, a system may use a "command" performative to indicate a request.

All projects reviewed work from the most common speech-act agent language used, the

Knowledge Query and Manipulation Language (KQML). KQML handles the interface

protocols for transmitting queries, returning the appropriate information, and building the

appropriate internal structures [BAY96]. Every KQML message consists of an operation type

and any information containing parameters required for the operation. The operation-type simply

indicates the type of communication (tell, ask-if, ask-one) and can either be a fixed KQML

operator, or a system specific performative. KQML is indifferent to the specific format of the

information itself and relies on the system to specify or understand the format of information

through the use of system specific data structures or constructs. As such, it can be used as a shell

to contain messages in various languages and also allow agents to route messages, even if they do

not understand the syntax or semantics of the content message [BAY96].

2.5 Agent-Based Information Gathering Frameworks

The following projects are representative of a multitude of agent-related, heterogeneous

information projects in the literature. They contain unique features that set them apart from the

15

other research that may be applicable to this research. Of most interest are the agent architectures

used and the similarities seen between the systems.

2.5.1 CARNOT

Initiated in 1990 at the Microelectronics and Computer Technology Corporation (MCC),

it was one of the first large-scale attempts at unifying distributed, heterogeneous information

[BAY96]. Carnot executes queries in a distributed environment by dispatching autonomous

computing agents to remote sites where they access databases and cooperate among themselves to

properly merge resulting data into understandable information.

Carnot provided two key technological advances. First, the Carnot developers created

knowledge representation techniques for capturing and maintaining an enterprise model as well as

the operations that map that model to the physical databases. The second advance, and of most

interest here, is the use of intelligent, autonomous agents to retrieve the enterprise information

and control enterprise processes [KAH94].

Intelligent agents are used to take a query, with reference to the common model from a

client application, and retrieve the information [BAY96]. They first consult the repository to find

which databases need to be accessed, then create other agents to execute the required accesses.

Each individual agent also contains the mappings needed to translate information from an

individual database into the correct format [WT95].

2.5.2 InfoSleuth

Carnot was not designed to operate in a dynamic environment where information sources

change over time and where new information sources can be added autonomously and without

formal control [BAY96]. InfoSleuth extends the Carnot technology into this dynamically

changing environment. Because sources can be added without formal control, information-

16

gathering tasks are defined generically, and results are sensitive to available resources [BAY96].

Using the agent-based architecture developed by Carnot, the InfoSleuth Project developed and

demonstrated technology that expedites the search for pertinent information in a geographically

distributed and constantly growing network of information resources. The InfoSleuth architecture

consists of a set of collaborating agents that work together at the request of the user to:

1. Gather information via complex queries from a changing set of databases and semi-

structured text repositories distributed across the Internet.

2. Perform rudimentary polling and notification facilities for monitoring changes in

data.

3. Automatically route location-independent requests to update individual data items.

4. Analyze information using statistical data mining techniques and/or logical

inferencing.

In the InfoSleuth environment, information is advertised by describing its information

content in terms of a network-wide distributed taxonomy. This taxonomy is similar to a

dictionary or directory but contains more information concerning the meaning of an entry and its

relationship to other entries [WT95]. Figure 2 shows the basic structure of the InfoSleuth system.

Together, an Ontology Agent and Broker Agent provide the basic support for enabling the agents

to interconnect and intercommunicate.

17

Applet Applet

User
Layer

Planning/
Temporal
Layer

Query/
Analysis
Layer

Resource
Layer

Dpiet A

-^* 1^
User Agent

t
SQL
Multiresource
Query Agent

Planning Task
Execution
Agent.

User Agent

I—

Applet

User Agent

f

t

Complex Event
Task Execution
Agent

■ ■■■inifr/r |

Derived Concept
Multiresource
Query Agent

Deviation
Detection Agent]

 f—
Resource Agent Resource Agent

Broker
/Agent

I Ontology
lAgent

Figure 2 InfoSleuth Architecture Layers

The Broker Agent maintains a knowledge base of information that all the other agents

advertise about themselves and uses this knowledge to match agents with requested services.

Thus, technically, the broker does semantic matchmaking. When an agent comes on-line, it

advertises itself to the broker and makes itself available for use. When an agent goes off-line, the

broker removes the agent from its knowledge base.

Several different types of agents are utilized for processing information within

InfoSleuth. They provide more specific definitions of the agents mentioned before. First, User

Agents act on behalf of users to first formulate their requests and pass them on for execution, and

then match the responses with the requests and pass them back to the requesting applet. Resource

Agents provide the interface to the various databases and other repositories of information as

required. If a query does not require a particular database, that database is not used.

Task Execution Agents plan how the request should be processed within InfoSleuth,

including result caching. Result caching involves storing the results of a query in case the same

query is processed again. Task Execution agents may also be specialized to monitor for complex

events that include changes in the data sources over time and simple events detected within

individual resources.

18

Within the InfoSleuth system, the agents themselves are roughly organized into layers as

shown in Figure 2, with the Broker and Ontology Agents serving all of the other agents. Users

access resources via a middle set of layers that acquire and process the information from the

resources as requested. Within the two middle layers, the upper, planning/temporal layer, deals

with processes that occur over time, such as the planning of tasks and the detection of complex

events that may be composed of sequences of simpler events. The lower, query/analysis layer,

executes one-time subtasks such as the retrieval of a current snapshot of some related information

or the detection of an anomaly in the data stream as it occurs.

InfoSleuth introduced several key technologies different from Carnot. First, it had the

ability to execute complex queries from a changing set of data sources. By monitoring sources, it

can provide improved query processing, utilizing sources that will provide more reliable and

useful results. It also extended the Carnot architecture with these mobile agents to provide

information analysis. Carnot did not offer statistical data mining techniques within its

framework.

2.5.3 SIMS

The Services and Information Management for decision Systems (SIMS) exploits a

semantic model of a problem domain to integrate information from various information services

[ACHK93]. In SIMS, the goal of information agents is "to provide information and expertise on

a specific topic by drawing on relevant information from other information agents" [KAH94].

Every SIMS agent contains a detailed model of its domain of expertise and models of the

information sources available to it. Given an information request, the agent selects the

appropriate set of information sources, generates a plan for retrieval, uses its knowledge of the

sources to reformulate the plan for efficiency, and then executes it.

19

Sources are modeled in each agent by the description of the classes contained within that

source. The relationships between the classes and the classes in the domain model are maintained

as well. Each agent contains a model of its own domain, as well as models of the other agents

that can provide relevant information [KA97]. The domain model is an ontology representing the

domain of interest of the agent. The agent also has an information-source model that describes

both the contents of information sources and their relationship to the domain model. In this way,

an agent only maintains the portion of the ontology and information sources relevant to it.

Every information agent is specialized to one application domain and provides access to

all available information sources within that domain. The domain model provides the description

of the information available from that agent to other agents or human users.

SMS differed from the other projects by using an advanced semantic model of the

problem domain. By performing more processing initially, it avoided expensive I/O access that

would not be useful. It went beyond simple semantic modeling by modeling relationships

between the classes of a source and classes in the existing domain model. This was one of the

first projects to provide advanced ontological services providing relationships.

2.5.4 TSIMMIS

The goal of the TSIMMIS project is to provide tools for accessing, in an integrated

fashion, multiple information sources [MEDDP95]. The TSIMMIS architecture is shown in Figure

3. Above each source is a translator (or wrapper) that logically converts the underlying data

objects to a common information model. To do this logical translation, the translator converts

queries over information in the common model into requests that the source can execute, then

converts the data returned by the source into the common model.

20

i Application"; 9 ^

Constraint

Manager

Info
Sou roe

Class if ie it Extractor

Info
Source

Medbtor'

Info
Souroe

Classifier/ Extractor

Mediator

Generator

Defi niton

Translator
Generator

Definition

Figure 3 TSIMMIS Architecture

Above the translators in the architecture are the mediators. A mediator is a software

module that refines in some way information from one or more sources [MHIP95]. A mediator

embodies the knowledge that is necessary for processing a specific type of information. For

example, a mediator for "current events" might know that relevant information sources are the

AP Newswire and the New York Times database. When the mediator receives a query, such as

for "articles on Bosnia," it will know to forward the query to those sources. The mediator may

also process answers before forwarding them to the user, for example, converting dates to a

common format or eliminating articles that duplicate information.

There are a number of differences between integration of information sources in the

TSIMMIS project and other database integration efforts [MHIP95]. First, TSIMMIS focuses on

providing integrated access to very diverse and dynamic information. The information may be

unstructured or semi-structured, often having no regular schema to describe it. The components

21

of objects may vary in unpredictable ways (e.g., some pictures may be color, others black and

white, others missing, some with captions and some without). Furthermore, the available sources,

their contents, and the meaning of their contents may change frequently.

Second, while not particularly beneficial from an automation standpoint, integration of

the information retrieved from various sources does require more human participation. In the

extreme case, integration is performed manually by the end user. For example, a stockbroker may

read a report saying that IBM has named a new CEO, then retrieve recent IBM stock prices from

a database to deduce that stock prices will rise. In other cases, integration may be automated by a

mediator, but only after a human studies sample of the data, determines the procedure to follow,

and develops an appropriate specification for the mediator generator.

Finally, TSIMMIS assumes that information access and integration are intertwined. In a

traditional integration scenario, there are two phases: an integration phase where data models and

Schemas (or parts thereof) are merged and an access phase where data is fetched. In the

TSIMMIS environment, it may not be clear how information is merged until samples are viewed,

and the integration strategy may change if certain unexpected data is encountered.

In summary, the goal of TSIMMIS is not to perform fully automated information

integration that hides all diversity from the user, but rather to provide a framework and tools to

assist humans (end users and/or humans programming integration software) in their information

processing and integration activities.

2.6 Common Information Retrieval System Architecture

While each project presented was unique in some aspect of its implementation, they share

several commonalities. These commonalities have become a template for most information

retrieval systems. They set out three important concepts for systems - agent technology, domain

models, and information brokerage. Agent technology introduced collaborative agents which

22

comprise a network, communicating by means of a high level query language KQML

(Knowledge Query and Manipulation Language). Domain models, or ontologies, give a concise,

uniform description of semantic information, independent of the underlying syntactic

representation of the data. Finally, information brokerage utilized specialized Broker Agents to

match information needs with currently available resources, so retrieval and update requests can

be properly routed to the relevant resources.

Developing a system using specialized agents with the ability to communicate with a

single information source, as well as with other agents, allows for a great deal of flexibility

[KAH94]. For instance, adding a new information source merely implies adding a new agent and

advertising its capabilities. In doing this, the systems reviewed all utilized a general approach

that is outlined below.

The general system operates as follows - When a query is made, the first step is to select

the appropriate information sources. There are several areas of thought here. Singh proposes

using metadata compiled at the time of the query to determine what sources to use [SING98]. In

this case, dynamic changes to knowledge sources are captured and reflected with each query.

The InfoSleuth project initializes the Ontology Agent at start-up, and all domain related queries

are routed to it, so dynamic changes in data are not necessarily captured unless the system is

restarted [BAY96].

The next step is to produce a plan to implement the required retrieval. Planning schemes

vary from system to system, but generally involve coordination of retrievals require ordering and

assignment to the appropriate agents. Overcoming the problem of redundant data in different

sources is handled by minimizing the number of different information sources used to answer the

query [KAH94].

The steps in the plan are partially ordered based on the structure of the query. This

ordering is determined by the fact that some steps make use of data that is obtained by other

23

Steps, and thus must logically be considered after them. Next, the plan produced is inspected and,

if possible, data retrieval steps that are grounded in the same information source are grouped.

Finally, the system reformulates a query plan into a less expensive, yet semantically equivalent

plan.

Metadata descriptions can be used to infer relationships between objects, unify

heterogeneous data representations into a common object data model and rapidly evolve

applications. By using metadata specifications for information sources, user query models, and

business logic rules, a system can decide dynamically how to handle requests at run time.

By making use of metadata at run-time, any changes in the information are reflected

immediately in a user query. This is in contrast to a procedural approach, in which a sequence of

steps must be prescribed to answer each query (the plan). A change in a source may require

changing all procedures that can very time-consuming. Once an extensible system is designed,

the individual agents must be built. Building agents is generally done with the help of various

tools and agent development frameworks. Two multi-agent development frameworks are

discussed next.

2.7 Multi-Agent Development Frameworks

In general, an agent development framework provides a set of templates and code that

facilitates or implements basic communication. It may also provide templates for various types

of agents or constructs that agents can use. Basic communication can be as simplistic as e-mail or

as advanced as direct communication. The key differences between most development

frameworks lies in the implementation and architecture of the provided communication and agent

functionality. Both JATLite and JAFMAS are described here and the methods of implementation

24

are discussed. Both are Java based frameworks that allow directed communication between

agents.

2.7.1 JATLite

JATLite provides a set of Java templates and a Java agent infrastructure that allows

agents to be built from a common template. The template for building agents utilizes a common

high-level language and protocol [JAT97]. This template provides the user with numerous

predefined Java classes that facilitate agent construction. The classes are also provided in layers

so that the developer can easily decide what classes are needed for a given system. In this way, if

the developer decides not to use KQML for example, the classes in the KQML layer can be

omitted. However, if that layer is included, parsing and other KQML-specific functions are then

automatically included in any agent developed from the JATLite base classes.

The key difference between JATLite and the other systems is the agent communication

infrastructure packaged with it [JAT97]. Traditional agent systems use some type of Agent Name

Server (ANS) for making the required connections between agents. An agent uses an ANS to look

up the IP address of another agent and then make a TCP socket connection directly to that agent

for the purpose of exchanging messages.

With such an ANS, if the IP address of an agent changes or the agent terminates,

collaborative agents find out when the next attempt to send a message fails. If an agent "crashes"

in any way, it is the responsibility of every other agent with whom it was communicating to

properly save the failed messages and resend them later.

JATLite uses a Agent Message Router (AMR) to act as the "server" and receive

messages from the registered agents and route the messages to the correct receivers [JAT97].

Received messages are also queued to the file system to ensure a resend can be accomplished if a

failure should occur. This provides more assurance a message will be successfully transmitted but

25

also places the burden of communication on a central agent. If a crash or other error occurs in the

AMR, no communication can occur and all queued messages are lost.

2.7.2 JAFMAS

The Java-based Agent Framework for Multi-Agent Systems (JAFMAS) is a Java-based

development framework that also provides a set of Java templates and a Java agent infrastructure

to allow agents to be built from a common template [CHAU97]. The core classes provided by

JAFMAS provide for both directed and multicast communications. Borrowing heavily from

COOL, a language for representing, applying, and capturing cooperation knowledge in multi-

agent systems, JAFMAS defines the social behavior of agents. Like COOL, JAFMAS defines all

interactions between agents as "conversations" and information exchange is performed through

the conversation in the way of performatives or through messages between agents involved in a

conversation.

The key difference between JAFMAS and other systems is the use of multicast

messaging to establish an agent's identity [CHAU97]. Multicast is a Java provided datagram

socket class that allows joining "groups" of other multicast hosts on a network. It differs from

broadcasting in that messages are sent to all members of the "group", not the entire network.

This ensures bandwidth is conserved and only agents that are affected by a message actually

receive it. More importantly, it frees a multi-agent system from relying on a central registry for

agent identity and message routing. This ensures a system can function even if an agent should

fail.

2.8 Summary

This chapter presented an overview of the different technologies that provide a

foundation for this thesis. First it discussed data mining, association rules, and how both can be

26

utilized. It next covered both generally accepted definitions of what defines an agent, as well as

some attributes that are more heavily debated. As agents are developed with combinations of

these traits and attributes, general classes have begun to form. These were described and

potential uses were covered. Information Retrieval Agents were then reviewed in more detail,

including some specific types. The importance and methods of accomplishing agent

communication in a multi-agent system was then discussed. Several projects that focused on new

or unique implementations of information gathering frameworks utilizing agents were presented.

Each was reviewed because of some unique aspect in which it used the agents or retrieved the

information. Finally, two agent development frameworks were covered, and potential trade-offs

of each were covered. One area that was found noticeably lacking in the literature was

unification of association rules obtained from data mining heterogeneous sources.

27

///. Methodology

3.1 Overview

Much like any software development process, developing a multi-agent system (MAS)

should follow a logical design process tailored to the goals of the target system. The frameworks

discussed in Section 2.7 provide the Java code necessary for representing and developing the

coordination knowledge and protocols required for a multi-agent system, but do not provide

guidance in the design of the system and determination of what agents may be required. In order

to apply any framework in the design and development of a system, a general methodology must

be applied. This chapter describes a five-step methodology similar to Object Oriented Analysis

(OOA) working from problem analysis to detailed agent design.

3.2 Methodology

The purpose of this research was not to develop a new agent development methodology,

however none was found that was adequate for the system being developed. Because of this, the

following methodology was developed. This section presents this methodology for development

that is similar in form to top-down Object-Oriented development methodology. This

methodology assumes that the decision to use an agent-based framework has already been made.

It does not aid in the decision of whether or not to use agents. By developing a methodology

similar to that already used, existing tools and ideas can be leveraged. It is important to

remember that this is not simply defining agents that can communicate, but an entire system that

has defined goals based on a problem description. In each step, the goals, scope, and level of

granularity is discussed. The following scenario is used as an example:

28

A program takes a request to find out in which distributed database a particular table is

currently stored. The program is located on the user's computer. The available databases

are geographically separated and have different formats.

The overall flow of the methodology is shown below in Figure 4.

Problem Analysis

Environment
Analysis

Determine Agents
and Development

Framework

Determine Lines of
Communication and

Data Structure

Detailed Agent
Design

Figure 4 Methodology Flow Diagram

3.3 Problem Analysis

The first step is to define the system based on the original problem description. This entails

specification of the inputs that the system can expect to receive, as well as expected outputs from

the system. At this level, the objects should be specified at a granularity no more specific than

domain level concepts. In agent development, such domain level concepts can include, but are

29

certainly not limited to, interface and processing. Inputs into and out of each object should be

specified at a high level of granularity as well. The goal is to show system flow and clearly

define expected system input and output streams. By breaking the system into domain level

concepts, we also begin to scope what agents may be used. An example of this is shown below in

Figure 5.

Data Request

Interface

Processing

Interface

Data (Result)

Figure 5 Sample Analysis

At this point, an agent development framework should not be considered. Further

decomposition must be done in order to properly evaluate which framework would be most

beneficial.

3.4 Environmental Analysis

Once analysis is complete, the environmental analysis is accomplished. The environment

includes not only the agents themselves, but must take into consideration hardware issues as well.

Some potential hardware issues may be memory requirements or the use of distributed computers

30

versus a single machine. Definition of the potential sources of information for input must also be

accomplished. Similarly, all outputs should be directed to another application or component of

the system. The problem definition and the existing sub-systems (computers) largely drive the

system design. For instance, if the task is to search distributed databases for instances of a

particular piece of data, the location of those databases may be static and dictate a heterogeneous ,

multi-computer, LAN-linked system. A sample system design is shown below in Figure 6.

Interface
User

Multi-OS

1
Data

Request

T
Result

10 MB

 I
100 MB Switched ATM LAN (Local to User)

Tl
 1
10 MB

 I
Processing

Seattle, WA
DB

(Oracle 7.0)
Pentium II333

Win NT 4.0,
128 MB RAM

128K

_l
Baltimore, MD

DB
(SQL 3.0)

SPARC Ultra 2
SOLARIS

64 MB RAM

Tampa, FL
DB

(Proprietary)
DEC Alpha

LINUX
128 MB RAM

Figure 6 Sample Problem Analysis

It is important to be as specific as possible given the information known. While the above

sample does not provide detailed information, it does reflect a WAN-to-LAN linked,

heterogeneous operating system multi-database system. It also shows where each system

31

component falls within the domain level concepts decided on in the analysis phase. While the

above figure only reflects the graphic representation of the system, careful documentation of each

component and the high-level requirements ofthat component should be accomplished as well.

3.5 Determine Agents and Development Framework

Once the system level requirements and high-level objects have been determined,

identification of agents can occur and a framework can be selected. Agents should be based on

either generally accepted definitions of agents or specialized agent definitions that are clearly

spelled out in the system documentation. Some generally accepted agent definitions have been

provided in Section 2.4. Once agent definitions have been decided upon, the agents should be

laid out with respect to the high level objects found in the analysis phase. The system level inputs

and outputs should be shown as they flow from agent to agent. The goals of each agent and the

services they will provide in the system should also be clarified.

Once the goals and services are clarified, a framework can be selected. The framework

should be based on the goals and services desired. If a framework has already been mandated, it

should be evaluated for potential problems related to the frameworks' strengths and weaknesses.

For example, if a TCL (telescript, a mobile agent language) based framework was originally

mandated, but the agents identified will only ever reside on one machine and communicate

through the network, another framework may be more useful and more efficient. Continuing the

example from the previous phases, Figures 7 and 8 show how agents are determined and fit into

the previous results.

32

Result

Figure 7 Determining Agents and Framework

Figure 7 shows what agent will reside on each component identified in the environmental

analysis phase. In the case of Mobile Agents, the path the agent can travel must be reflected. In

the example shown, the program takes a request to find which database a table is from then it

checks the broker to find all available databases. The Task Agent passes the task to the databases

and monitors their progress. Each database must have an interface agent to check the database

for a matching record and then report back to the task agent.

Figure 8 depicts the known communications infrastructure that must be utilized. Again,

it depicts the fact that the system must work across a distributed environment and may have some

bandwidth constraints that should be considered. The location of each agent is also shownA

33

Interface
User

Interface Agent
Task Agent

Data
Request

Agent System
Server

Broker Agent

Result

10 MB

I

100 MB Switched ATM LAN (Local to User)

T"
Tl

l
Processing

Seattle, WA
DB

DB Interface Agent

128K

Baltimore, MD
DB

DB Interface Agent

10MB

Tampa, FL
DB

DB Interface Agent

Figure 8 Sample Problem Framework Analysis

3.6 Identify Lines of Communication and Data Structures

For each line of communication to and from an agent, data structures should be identified for

the information that is being passed. In an agent framework such as JAFMAS, these lines of

communication will ultimately become conversations. Based on the agent framework selected,

the information that should be specified for each line of communication may be different. For

frameworks using performatives, as most do, the performatives should be clarified, along with the

data structures each message will contain. In a communication-centric language such as

JAFMAS, finite automata should be developed for each conversation, as well as for system level

34

states. This ensures proper information flow and reduces the risk of infinite wait states. In the

example being used, the interface to broker conversation is modeled below in Figure 9.

Performatives:
• Avail Agent Request
• No Agents Avail
• Agents Exist

Data Structures
• AgentList: Array of Agents
• Agent: Record - Name, Location, tasks performed
• Request: Table to find

Request

Figure 9 Sample Conversation Diagram

Each conversation should be identified, then modeled. For each model all states should be

identified and all information passed should be reflected.

3.7 Detailed Agent Design

Once each agent knows exactly what information it will receive or generate, specific

algorithms can be developed to perform the proper agent tasks. The agent framework selected

should already provide core agent functions such as communication and perhaps even planning.

The algorithms developed should be specific to the individual agent task, but utilize the data

structures that were identified in the specification of the lines of communication. Since the

information and data structures that will be passed to the agent have already been identified, as

35

well as the expected output, the algorithms selected should simply perform the processing

required to go from input to expected output.

3.8 Summary

Development of a communication-centric, multi agent system should not be

accomplished in an ad hoc manner. This chapter outlined a five-step methodology that can be

applied to develop a system for a specific problem. It does not aid in the decision on whether a

system is best-solved using agents. The methodology starts looking at the system from a domain

level view and moves to detailed agent design. It provides for selection of an agent development

framework, but only after specification of as many components as possible. By applying these

five steps to the problem presented in this research, a multi-agent system is evaluated and formed.

This process and specific application is described in the next chapter.

36

IV. Proposed Agent Architecture

4.1 Overview

The previous chapter explained the methodology that can be applied to the problem

described in Chapter 1. Following this methodology allows for a logical thought process to be

applied to the process of individual agent design and system integration. This chapter applies this

methodology and describes the process at each phase. This includes potential design decisions

and trade-offs associated with the decisions.

4.2 Problem Analysis

Chapter 1 describes the problem to be solved in detail, however a short excerpt is

included below for review:

This system will use an existing agent development tool to establish a multi-agent

based framework and define the communications between those agents. The framework will

accept a request for one of three possible data mining operations. Once the system accepts the

request, it will determine which data sources can fulfill the request and task the agents

responsible for those sources to begin data mining. Once results have been obtained, they

will be unified to eliminate redundant or conflicting results.

Analysis of the problem shows that there are two main domain level concepts that must

be utilized - interface and processing. The new system must interface with an outside application

to receive the data mining tasking. Once it receives the tasking, it must process the data and

determine the proper data sources. Data sources are then mined (still under processing) and

results are unified, then presented back to the application (interface). This is represented

pictorially below in Figure 10:

37

Request from
PESKI

Interface:
• Receive Request
• Determine Data Sources
• Task Sources

Processing:
• Perform Data Mining

I
Interface:

• Unify Results
• Convert results to

application specific format

Data (Result)
to PESKI

Figure 10 Domain-Level Problem Analysis Diagram

4.3 Environment Analysis

The problem description in Chapter 1 designates some of the environment and system

properties. First, the system can have several data sources on various machines. Data sources

can be of the same or heterogeneous formats. There is no mention of operating system (OS)

requirements so it is assumed that they could operate on any major operating system. There is

also no mention of geographical location so it is assumed that each data source could be located

on a separate machine in any geographic location, but will have access to some method of

network communication. The environment is presented pictorially in Figure 11. The arrows

represent (as yet unspecified) information being passed. No information is given about expected

38

computer specifications or transmission rates so none is specified in the figure. It is possible a

data source could reside on the same LAN as the DBMiner program, in which case the

intermediate LAN or WAN would not be required.

PESKI fc, DBMiner

4 ^

A±
LAN or WAN

LAN LAN

Data Source Data Source

Figure 11 Environmental Problem Analysis Diagram

4.4 Determine Agents and Framework

Based on the problem and environment analysis, there are several types of agents in this

system. Each adheres to the general agent definitions described in Section 2.4. They are grouped

based on the similarities of the tasks they perform and their individual goals. The seven main

categories of agents in this system are User, Task, Broker, Ontology, Data Analysis, Unification

and Registration. Each falls within the domain level concepts specified in the problem and

environment analysis phase. The User, Task, Broker, Ontology, and Registration Agents are all

interface agents. They all provide interfaces to either an outside system, agents within the

39

system, or data sources. They do not process the data in any way. The Data Analysis and

Unification Agents are processing agents that manipulate the request or data within the system.

All agents are discussed in more detail in this section as well as Section 4.6. The overall system,

with lines of communication, is depicted in Figure 12. The specifics of the conversations are

covered in Section 4.5.

Figure 12 Overall Agent System Diagram

In order to better understand how the process works, it is useful to trace through the

communication paths a request would take. The process begins with the User Agent receiving

notification from the application that a request needs processing. The User Agent picks up the

application-formatted request and converts the data into a request of type Request Class so that

the agent system can understand it. It then sends a message to the Task Agent. The Task Agent

then asks the Broker Agent for all useful Data Analysis Agents. The Broker Agent receives the

40

request, compiles a list of all Data Analysis Agents in the system, then checks to see if an

Ontology Agent exists. If one exists, it sends the list of Data Analysis Agents, along with the

request for analysis. The Ontology Agent accepts the request and checks to ensure the Data

Analysis domains against the request. It returns a list of useful agents to the Broker. The Broker

then returns this list to the Task Agent. Once the Task Agent receives the list, it sends a request

to each Data Analysis Agent in the list to begin mining. Each Data Analysis Agent accepts the

request and begins data mining its applicable data source. Once completed, the Data Analysis

Agents send the results back to the Task Agent. Once the Task Agent has all the results, it passes

them to the Unification Agent. The Unification Agent processes the results, unifies them, and

passes the results back to the Task Agent. The Task Agent then passes the unified results back to

the User Agent. The User Agent then converts the results to a format the external application can

recognize and notifies the application the results are available.

It is also useful to look at a class diagram of the system. Figure 13 shows the diagram

and the fact that all components of the system are subclasses of the abstract Agent class. It also

reflects the fact that the Data Analysis Agent is a composition of two classes, the resource

interface and the mining algorithm that will operate across the data source associated with a

particular Data Analysis Agent.

Agent

4 ̂

User Task Broker Ontology Registration Data
Analysis

Unification

5

Resource
Interface

Mining
Algorithm

Figure 13 System Class Diagram

41

The next subsections will describe the function of each agent from a high level

perspective. It also discusses design decisions that were made and the reasons that they were

made. The agents are presented in the same order as they might be utilized to process a request in

order to see how each agent's function fits into the system and supports the other agents.

4.4.1 Registration Agent

When any new agent is introduced into the system, it must first inform the

Registration Agent that it has entered. The function of the Registration Agent is to inform all

appropriate agents that are already in the system of a new agent's arrival. Since the system is

designed to be relatively static in terms of new data sources and data source types, the

Registration Agent will be the least utilized agent. It should also be the first agent created and

started in the system. Because the system used here cannot operate without a Broker Agent as

well, the Registration Agent will initiate all methods, then await a Broker Agent to enter the

system.

Once notified a broker has entered the system, the Registration Agent completes

initialization and waits for a registration request from any new agents. When a new agent enters

the system, it sends a registration request message to the Registration Agent. When it receives

notification of a new agent, the Registration Agent determines the functions the agent can

perform by the information transmitted in the registration message. Based on the specific type of

the new agent, the Registration Agent then determines who should be informed. The Broker

Agent will be informed of all classes of agents entering the system. In the case of a Data

Analysis Agent (the most common type of new agent), the Ontology Agent must also be informed

of the entry. Once all appropriate existing system agents have been notified, the new agent will

be informed it is active in the system.

42

4.4.1.1 Registration Agent Design Decisions

The Registration Agent could be eliminated and its functionality be shifted to the

registering agent. Two approaches could be taken. First, any new agent could simply be required

to determine what agents need to be contacted then contact them directly. By forcing new agents

to perform extra processing and include additional system specific information, the system loses

some extensibility. The second option is to have each new agent simply broadcast the fact it has

arrived, and any existing agents that need information from it can then request it directly. This is

also undesirable because of the additional overhead a broadcast message consumes. It requires

agents who may not be affected to commit processing to the message as well as consumes

bandwidth. Finally, the Registration Agent provides for future expansion of the system to include

various metrics or monitoring agents. By utilizing a Registration Agent as a central point of

information exchange in the Registration Agent, any future tasks such as dynamic data mining

algorithm assignment can be easily included.

4.4.2 User Agent

The system has one point of entry into the end application. At this point of entry all

unified results must be presented and all requests for data mining retrieved from the application in

a format it understands. This dictates three essential operations the User Agent must be able to

undertake. First, the User Agent must be able to pick up and understand requests. Second, it must

be able to present results in a format the application can understand, and finally, it must be able to

pick up such asynchronous events such as a stop mining or end operations from the application.

The user agent has all the knowledge required to translate information from the application to a

format the agents can understand and vice-versa.

43

The first task, requests for data mining, can be one of three possible requests. First, the

user can select to discover all trends with a given statistical significance. Statistical significance

with respect to mining association rules consists of a specification of a value for confidence as

well as support as presented in Section 2.2. The value of the statistical significance must be set

either by the user or set in the system. Second, the user can specify an item (X) and ask for either

sets or individual items (Y) that are involved in transactions enough to be "of interest". Again,

"of interest" refers to items above some statistical significance level set by the user or system.

Finally, they can specify an X and Y and ask simply if there is a statistically significant trend

between the two. All of these options will initiate the search for association rules of the form X

=> Y across the data sources available.

4.4.3 Task Agent

Once the user agent has retrieved the data, it passes it to the Task Agent. The Task Agent

must determine, based on the information passed to it by the User Agent, what agents to task to

fulfill the request. The information received can dictate one of two possible requests. The first is

for a cancellation of the current operation. Such a request from PESKI may occur if a user feels

the current operations are taking too long, or are no longer needed. In this case, the Task Agent

must send the cancel message to all agents currently tasked and performing work.

The other possible request from the application is for one of the three data mining

operations. No matter which of these three tasks it must undertake, it will ask the Broker Agent

for all agents which can fulfill the desired tasking. (This is covered in more depth in the next

section). If the user wants all possible rules meeting minimum support and confidence levels,

across all available data sources, then the Task Agent must task every data agent possible for all

association rules. If the user wants to find all items Y which have statistical significance for a

given X, the Task Agent must task only those agents which have information about X. It would

44

be time consuming and wasteful to task agents which have access to data not containing X, as no

rules would be generated. Finally, if the user specifies an X and a Y and asks for the level of

support and confidence between the two, the agent must again only task those agents that have

information about both X and Y.

Once data mining is completed, the Task Agent accepts all the results from the individual

Data Analysis Agents. When all Data Analysis Agents are finished, the Task Agent passes the

results to the Unification Agent. When the Unification Agent is completed it returns the results

and the Task Agent passes them onto the User Agent.

4.4.4 Broker Agent

To fulfill a tasking the Task Agent must talk to the Broker Agent, asking which agents

can fill the request. The Broker Agent maintains all information on the capabilities of individual

agents in the system and responds to queries from agents as to where to route specific requests.

By requesting only those agents who may have relevant information, the Task Agent can

eliminate tasking any agents that could not possibly discover any useful rules. However, the

Broker Agent does not maintain ontological information about the agents in the system, only then-

high level functionality and where they are located. In order to determine which agents could

have the information the Task Agent will need, an Ontology Agent is used. The Ontology Agent

(discussed in Section 4.4.5) maintains and provides overall knowledge of ontologies and answers

queries about the ontologies.

The Broker is also notified whenever a new agent enters the system. Each time the

Registration Agent notifies the Broker Agent of a new agent, it must add the agent and its

capabilities to the list of available system agents. The Broker Agent interacts with the Task

Agent, the Ontology Agent, and the Registration Agent.

45

4.4.4.1 Broker Agent Design Decisions

The alternative to using a broker and Ontology Agent is to use the multicast capabilities

offered by JAFMAS. When a Task Agent receives a request from the User Agent, it could

simply send a multicast message to all Data Analysis Agents requesting data mining for a

particular X or Y or both. The individual agents can then check their domains to see if they have

the X or Y and respond appropriately. This was not done for one key reason. First, while

JAFMAS offers this capability, other frameworks do not, and to offer a truly extensible

architecture, this system should not be too closely tied to the features of JAFMAS that could not

be implemented under another framework. The multicast ability is closely tied to the JAVA RMI

registry, and is not a universally implemented feature. Other features, such as the direct message

capability, are implemented in other ways in other frameworks, so this system could be more

easily ported.

4.4.5 Ontology Agent

After the Broker Agent determines which agents may be useful for any given task, it

queries the Ontology Agent to determine if the agent has the information required. This would be

useful if the user has specified an X and wants all Y, or has specified both an X and Y as part of

the data mining request. The Ontology Agent maintains all the random variables for the data

source a Data Analysis Agent is responsible. By comparing an X or Y value against this list of

random variables, the Ontology Agent can determine if the value will be found in that Data

Analysis Agents source. If a data source could not possibly return any useful rules, or rules with

X or Y, because they are not in its domain, it should not be tasked. Once it has determined which

agents would be useful, it returns the list to the Broker Agent.

When a new Data Analysis Agent is added to the system, the Ontology Agent is notified

by the Registration Agent. Upon receipt of the notification, the Ontology Agent adds the new

46

agent and its respective domain to the list of agents and domains it maintains. Currently, the

Ontology Agent only maintains a list of the random variables in each data source. It does not

maintain any semantic or other related information about those random variables. In the future,

the addition of such information might be used to distinguish between similar words, i.e. smoke

from a cigarette and smoke from a fire. If a user specifies an X of smoke and intends only for

associations with smoke from a cigarette, the Ontology Agent could eliminate data sources with

smoke (from a fire) in their domain.

4.4.5.1 Ontology Agent Design Decisions

The Ontology Agent function could be easily integrated into the Broker Agent as they

currently use the same data structure and maintain the same information. This is only because of

the simplistic nature of the Ontology Agent implemented for this system. The Ontology Agent

can perform much more advanced domain checking through semantic interpretation of random

variables. In the future, if expansion or revisions occur, the Ontology Agent will emerge as a

necessary separation from the Broker Agent. It is for these reasons that it is separated now, rather

than later.

4.4.6 Data Analysis Agent

Once the Broker Agent has determined what agents can fulfill a given task, it passes the

information back to the Task Agent. The Task Agent then tasks each useful Data Analysis Agent,

passing it the relevant information. "Useful" in this case refers to a Data Analysis Agent that is

responsible for a data source that includes either the X or Y value of the request in its domain.

The Data Analysis Agent encapsulates two key classes. First, it includes a resource interface for

data source specific retrieval and also has an instance of a data mining algorithm to operate over

the resource interface associated with the Data Analysis Agent.

47

The Data Analysis Agent accepts a request from the Task Agent and initiates the data

mining algorithm using the values contained in the request. As the algorithm runs, it makes

requests for data directly to a resource interface. The resource interface should be the only

format dependent portion of the system. The Data Analysis Agent continues until it has

completed its task and found all statistically significant trends, then returns the results to the Task

Agent.

4.4.6.1 Resource Interface

The resource interface is encapsulated by the Data Analysis Agent and holds all the

information needed to interface with the specific format data source for which it is responsible. If

it is flat-file, the resource interface must be specialized for flat-file access and could not talk or

retrieve data from a relational data source. Similarly, a resource interface responsible for a

relational data source knows how to specifically retrieve information from a relational data

source, no other format. These agents are not specific to data mining but rather are able to answer

any query into its data source. If a new data source is introduced into the system, it must include

a Resource interface that is capable of communicating with Data Analysis Agents. Additionally,

Resource interfaces must be able to respond to queries from the Ontology Agent concerning the

random variables within the data source (its domain). Upon entry into the system, a Resource

interface must announce itself to the Registration Agent so that it can be recognized by the system

and the Broker Agent can add it to the list of system agents. Once it has registered, the Ontology

Agent will query the resource interface for the domain of the data source for which it is

responsible.

48

4.4.7 Unification Agent

When the Task Agent has received all the results from the Data Analysis Agents, it

passes them to the Unification Agent. The Unification Agent contains all algorithms for unifying

the data. It performs this unification on the results before passing them back to the user agent.

Initially, the Unification Agent will look at results for rules that are the same but from different

data sources. It combines the results from each source into one rule that blends the support and

confidence levels based on number of transactions from each source. For instance, if data source

A has a rule X =» Y meeting minimum support and confidence levels based on 10,000

transactions, it should get more weight that data source B's rule stating X => Y based on 100

transactions.

4.4.8 Determining the Development Framework

There are key differences between JAFMAS and JATLite that must be considered before

selecting one development framework over the other. The biggest difference is the use of a

centralized router or server for agent identity and message routing. JATLite uses Java's Server

socket and Socket classes while JAFMAS uses Java's Remote Method Invocation (RMI) and

MulticastSocket class. JATLite uses the sockets to talk with the centralized Agent Name Server

for establishing agent identity. This allows for a single point of failure in the system. It also uses

a centralized router for communication between agents. Again, this creates a single point of

failure for the system. If either the ANS or router goes down, the system cannot function.

On the other hand, JAFMAS uses multicast messaging to establish agent identity. This

allows an agent to fail without affecting the agent system as a whole. Additionally, JAFMAS

does not use a centralized router for agent communication, but rather uses the JAVA RMI

Registry that is located on each agent. Again, this removes the single point of failure from the

communication architecture. Both platforms, because they are Java-based, allow for a

49

heterogeneous, multi-platform framework, as well as Java Database Connectivity (JDBC) for

extensibility.

This research uses the JAFMAS framework for robustness reasons. A system should not be

reliant on a singular component. JAFMAS provides this, as well as the ease and extensibility of

Java. Table 1 compares key features of JATLite and JAFMAS [JAF97]:

Table 1 JAFMAS versus JATLite

JATLite JAFMAS

Java Version JDK 1.2 JDK 1.2

Each agent has its own
thread?

Yes Yes

Communication between
agents?

Centralized Router Directed or multicast

Means of directed
communication?

Uses Java's Serversocket and
Socket classes

Uses Java's RMI and
MulticastSocket

Peer-to-Peer
communication?

No Yes

Agent identity established
through?

Registering with a centralized
Agent Name Server (ANS)

Multicast messaging

Subject-based addressing
supported?

No Yes

Speech-act type supported? Yes Yes

Security features
User name and password check
provided apart from using the

Java security features

Relies on Java security
features.

4.5 Define Agent Conversations and Data Structures

Once the primary functions and high-level interactions are defined for each agent, the

conversations required to fulfill these functions must be defined. Each agent is discussed and all

conversations required for that agent are presented.

50

Each conversation is graphically depicted in a State Transition Diagram (STD). Each

diagram can be labeled one of two ways. First, if it depicts a conversation for an agent making a

request or initiating a conversation, it will be labeled 'Receiver:' and includes the type of the

agent to which it is sent. Next, if it is a conversation to which the agent is reacting, it is labeled

'Initiated by:' and includes the type of agent that sent the conversation-initiating message. Each

conversation will have a compliment conversation in another agent that will be referenced. The

double circle (state S2 in Figure 14) is used to indicate a final state for any particular

conversation. A transition occurs on a message receipt or send action. Each transition can

include any of the values specified in the following list:

Start: indicates the start of a separate conversation. Conversation is launched within the

existing conversation, which then waits until the conversation just launched completes.

Send: the performative being sent. If the agent is the initiator, this will be the first

transition. It is represented by the Type field of a message.

Receive: the performative received. If the agent has not initiated the conversation, this

will be the first transition. Again, contained in the Type field.

Content: Optional. May contain some data structure or information.

Intent: Optional. May contain some value or even a data structure.

SuchThat: Optional. Used only from intermediate states in a conversation. Transition

occurs only if the suchThat evaluates to True.

At each intermediate state, there can exist a do action. This is a method or action to be

performed upon reaching the given state. It is performed by the agent for whom the conversation

is modeled. Any state with a do action must have at least one transition out with a suchThat

clause to allow for completion of the action. In some cases, a cancellation could cause a

transition without completion of the method or action.

51

Initiated by: Agent who sent the first message
(Figure XX - corresponding conversation from Initiating Agent) OR
Receiver: Agent to receive initial message
(Figure XX - corresponding conversation from Receiving Agent)

do: Action or Method

receive: Performative
content: Data Structure
intent: Some Value or
Structure

0 suchThat: Condition
send: Performative
content: Data Structure

Figure 14 Generic STDfor a Conversation

This section first covers the JAFMAS provided abstract class Agent and the methods it

requires to be implemented in each agent instantiation. It then outlines the common

conversations that any agent can undertake. The first of these is making a request to the Broker.

Section 4.5.2 outlines how the Broker handles this and how it was made into a generic process. It

includes a generic STD that is representative of the conversation in which any agent engages

when making a request to the Broker. The second common conversation is the Registration

Conversation. Again, this is overviewed and a generic STD is shown that reflects the

conversation in which any registering agent engages. Finally, it discusses each individual agent

and the conversations in which it engages and shows a STD from that agent's viewpoint.

4.5.1 Using the Abstract Agent Class

All agents in the system are extensions of the JAFMAS provided Agent Class. This is an

abstract class that provides the implementation of all communications an agent requires. An

abstract class is a class that encapsulates a concept, but does not allow instantiation. For instance,

food represents the abstract concept of things that we all can eat. However, it doesn't make sense

for an instance of food to exist. What we would like to exist is instances of classes of food, such

52

as cake, apples, and oranges. An abstract class may contain abstract methods, or methods with no

implementation. In this way, an abstract class can define a complete programming interface,

providing its subclasses with the method declarations for all of the methods necessary to

implement that programming interface. However, the abstract class can leave some or all of the

implementation details of those methods up to its subclasses.

The abstract agent class provides the methods and implementation to allow initialization

and communication, however it requires any subclass to implement the startConversation and

addSubjects methods. These methods will be specific for each subclass of agent that can exist.

When a new agent is created it will then inherit all methods of the abstract agent class.

4.5.2 Utilizing the Broker Agent

Before each conversation is initiated, the sending agent must discover exactly what

agents should receive the message. To do this, it asks the Broker Agent to pass it the names and

locations of all agents of a certain type. This occurs every time an agent initiates a conversation

to ensure the proper agents receive the message and enables new agents to be immediately

recognized by all agents in the system. Because this is a repeatable process, a generic

conversation class was created that any agent can use to query the Broker. This ensures any new

agent can immediately talk with the broker by simply instantiating the conversation class and

forces proper formatting of any requests. Improperly formatted requests will not be recognized

by the broker and hence go unfulfilled. It also creates an extensible framework for any system

that may use a Broker-Centric hierarchy. The generic conversation is modeled below (Figure 15)

and is not reflected in the conversation STD's for each individual conversation. Figure 26 shows

the conversation from the Broker Agent perspective.

53

Initiated by: Any requesting agent (Figure 26)

do: Wait

r^
receive: AgentsFound
content: AgentList

\^^s' send: FindAgents
content: optional.
Request
intent: type of agents
required

receive: NoAgents

Figure 15 Agent to Broker Conversation

All agents must have the capability to register in the system. This section discusses how

this is accomplished in more detail from a conversation viewpoint, including some design

decisions that were made. One goal in this area was a common registration conversation that

could be instantiated by any agent (existing types or new). In order for this to occur, the common

information required to register must be made available through methods associated with the

registration conversation. The agent registration process is covered first, including what agents

are notified of any new registration and the information required from the registering agent. Next

is a look at the conversations that must occur for a successful registration, including the values

each message must contain. Finally, why and how this process was made a default part of each

agent is discussed.

4.5.3 Registration Agent

The Registration agent is responsible for ensuring every agent that needs to be aware of a

new agent, is made aware. The functions described in Section 4.4.1 dictate three possible agent

conversations. First is the new agent conversation (Figure 16). The conversation in Figure 16 is

from the registering agent's perspective and is shown as a generic STD since every agent will use

the same conversation when it enters the system.

54

Initiated By: Any Registering Agent (Figure 17)

0
suchThat: domain exists "0: Wait
send: Register
content: domain

suchThat: no domain
exists
send: Register receive: Accepted

do: Wait

Figure 16 Agent to Registration Conversation

When a new agent is created, it automatically locates the Registration Agent by means of

a broadcast request to the system. The directed communications module of JAFMAS

automatically responds to this request with the Registration Agent's Ml name. The new agent

then uses this information to send a "Register" performative message to the Registration Agent.

The Registration Agent must recognize this request and, based on the type of agent requesting

registration, initiate conversations with the Broker and/or the Ontology Agents. Figure 17 shows

this conversation from the Registration Agent's perspective.

Initiated by: Registering Agent (Figure 16)
do: Wait 0 receive: Register 0 start: informBrokerConv

'send: Accept»

/ S, 1^^" suchThat: Ontology Agent and
, JL J domain exist
\^_^' start: informOntologyConv

do: Wait

2 ' suchThat: Ontology Agent
or domain not exist
send: Accepted

Figure 17 Registration to Agent Conversation

55

Figure 18 shows the conversation the Registration must initiate with the Broker Agent to

inform it of a new agent's arrival. As previously mentioned, the Ontology Agent should only be

informed when an agent which has a domain associated with it enters the system. In this case the

Registration Agent initiates a conversation with the Ontology Agent (Figure 19), passing the

applicable information (domain, name and type). Once the Registration Agent has received an

acknowledgement from the Ontology Agent, it ends the conversation.

Receiver: Broker Agent (Figure 25)
J XT . d0: Wait

send: New Agent
content: AgentMetaData/^~X «onw: Broker Added

s„ \ >{\l ►

Figure 18 Registration to Broker Conversation

Receiver: Ontology Agent (Figure 29)
, XT . do: Wait

send: New Agent
^J^content: AgentMetaData /^7"\ receive: OntologyAdded. ,

 ^ [) ^ (1)
Figure 19 Registration to Ontology Conversation

In order to ensure all agents have the ability to register and all required message fields are

set properly, the Abstract Agent's class was extended to include the method register(). Since all

new agents in this system are based on this class, they inherit this function and only need to

ensure that the method call is included in the appropriate place. Most likely this will be in the

agent constructor.

56

4.5.4 User Agent

4.5.4.1 Conversations

The User Agent is unique in that it must understand conversations in two forms - from

other agents, as well as from the requesting application itself. Because the communication with

the application will only consist of getting requests and passing back results, it is not modeled

here, but it must be considered a line of communication nonetheless. The user agent interacts

with only one agent, the Task Agent. Figure 20 shows the STD for the conversation. Once a

request from the application is received, it initiates a request for mining based on the values

passed to it by the application with a DoMine. The Task Agent will acknowledge receipt and the

User Agent waits until either results are returned or it is informed there are no data sources can

provide information (with a NoAgents). It then passes the results back to the application. In the

case of no results it sends back an empty results list.

Receiver: Task Agent (Figure 21)

do: Wait
send: DoMine 0 content: Request

do: Wait

receive: Accept

receive: ResultsReady
content: Results

receive: NoAgents

Figure 20 User to Task Conversation

57

4.5.4.2 Data Structures

The conversations in which the User Agent engages dictates a number of data structures.

When the User agent first picks up the request from the application it must convert it to a request

the agent system can understand. The Request Class is used to store this request as it passes

throughout the system. It will have the following structure:

Request Class: Includes Support, Confidence, X, and Y, where X and Y are either values

or null, depending on the request being made, for example, if X = (sidewalk, dry) and Y = null,

then we are looking for any Y value in which (sidewalk, dry) => Y is true for the support and

confidence values.

In order to store the results of the data mining process, the User Agent must also utilize a

class that allows for a list of individual rules. This class is RulesList and has the following

structure:

RulesList: Array of unspecified length with each element consisting of an individual Rule

Rule: Each rule has a Support, Confidence, Antecedent, and Consequent.

4.5.5 Task Agent

4.5.5.1 Conversations

The Task Agent interacts with the user agent, the Broker Agent, the Data Analysis Agent,

and the Unification Agent. Ultimately the Task Agent initially reacts to a conversation initiated

by the User Agent as depicted in Figure 21.

58

Initiated by: User Agent (Figure 20)

do: determineTasks

start: startBrokerConv

send: ResultsReady
content: Results do: Wait

uchThat: UsefulAgents not exist
send: NoUsefulAgents

Figure 21 Task to User Conversation

The user agent will request that some data mining operation be completed with a

DoMine and will pass the appropriate variables dependent on the type of operation as discussed in

3.4.1.2. In response to a request for completion, the Task Agent determines the type of request

being made from the variables sent. Once it has determined the type of the request, it informs the

User Agent it has all the information it needs with an Accept and begins processing.

The Task Agent then initiates a conversation with the Broker Agent to determine what

Data Analysis Agents it should task for the given request (Figure 22). It awaits the results, then

ends the conversation. It can receive one of two possible messages as results. It can receive a

message of AgentsFound and list of useful agents, or a NoAgents message, indicating there are no

data sources that could mine association rules for the variables given. If NoAgents is received,

the Task Agent sends a NoUsefulAgents message to the User Agent and ends the User

Conversation.

59

Receiver: Broker (Figure 26)

send: FindAgents

do: Wait

►0
receive: AgentsFound
contents: Agents

receive: NoAgents

Figure 22 Task to Broker Conversation

If agents were found {AgentsFound received), it then initiates a conversation with each of

the Data Analysis Agents returned to it from the Broker Agent. It requests that the agents begin

data mining for the values in the original request. It can pass none, one, or two random variables

with associated support and confidence levels for the Data Analysis Agent to mine. This is again

dependent on the type of request the user has selected as discussed in 4.4.2. Once it receives the

confirmation from the Data Analysis Agent, it awaits either results or a conversation initiated by

the user agent requesting a termination of the current data mining operation.

Receiver: Data Analysis (Figure 30)

do: Wait

0 send: BeginMining
content: Request r^\ receive: MiningComplete

^ , v, x contents: Results ^ >[^J ►

Figure 23 Task to Data Analysis Conversation

After terminating all conversations with the Data Analysis Agents, the Task takes the

results and passes them to the Unification Agent. It initiates a conversation with a Unify

performative and waits until it receives a UniflcationComplete message with the unified results

60

included (Figure 23). Once it receives the results and terminates the Unification Conversation, it

sends a ResultsReady message to the User Agent and ends the conversation. Once the User

Conversation is terminated, the Task Agent waits until another DoMine message is received.

Receiver: Unification Agent (Figure 31)

do: Wait
send; Unify s s. receive: UnificationComplete

c \ content: Results ^ / c \ contents: Results

Figure 24 Task to Unification Conversation

4.5.5.2 Data Structures

The Task Agent must handle virtually every data structure the system has. It uses the

structures from the User agent (Request and RulesList) as well as several others. First, it must be

able to handle a list of agents returned from the Broker Agent. It also must be able to handle a list

of RulesList in order to pass them to the Unification Agent. These structures are shown below:

AgentList: Array of unspecified length with each element containing AgentMetaData

AgentMetaData: Record that contains agent name, function or tasks performed, and a

domain if one exists.

AllRules: Array of unspecified length with each element containing a RulesList (see

Section 4.5.4.2)

61

4.5.6 Broker Agent

4.5.6.1 Conversations

The Broker Agent primarily interacts with the Task, Ontology, and Registration Agents,

but should ultimately respond to any properly formatted request for agents that can fulfill a given

task. As mentioned before, the primary functions of the broker are to (1) maintain a list of all

agents in the system and the tasks they perform and (2) answer queries requesting agents that can

fulfill any given task.

To perform the first function, the Broker must be able to communicate with the

Registration Agent and receive new agent's information. This conversation is initiated by a

AddAgent message that contains the new agent's full name and task list (Figure 25).

Initiated by: Registration Agent (Figure 18)

©receive: AddAgent /■—v.
content: AgentMetal^ta f g \ send: Broker Added

Figure 25 Broker to Registration Conversation

The new agent's information is taken from the message content, the global list of agents

is updated and an acknowledgement is sent to the Registration Agent. The acknowledgement is

simply a message entitled BrokerAdded. Once the message is sent the conversation is terminated.

The second task is more complex. When an agent makes a request for information, the

Broker must get the request, process it, then determine if the Ontology Agent should be utilized.

This conversation is initiated by a request message titled FindAgents from an agent in the system

and is shown in Figure 26.

62

When this message is received the broker processes the information and then, based on

the result of the content of the message, either begins another conversation with the Ontology

Agent, or sends the results to the requesting agent.

Initiated by: Any Agent (Figure 15)

receive: FindAgents
intent: Type of Agent
required (opt)

c \content: Request (opt)

suchThat: noAgentsExist
send: NoAgents

suchThat: AgentsExist and
noRequestSet
send: AgentsFound
content: Agents

suchThat: noAgentsExist
^^- send: NoAgents

SuchThat: agentsExist and
requestSent
sterf/brokerOntologyConv / „ \ .
 W / S2 Wo: Wait

suchThat: AgentsExist
send: AgentsFound
content: Agents

Figure 26 Broker to Requesting Agent Conversation

If the content was set and included a request with the X, Y, or both values set, then the

Ontology Agent must be utilized. The Broker initiates a conversation with the Ontology Agent

with a CheckDomains message. This conversation is shown in Figure 27.

Receiver: Ontology Agent (Figure 28)

send: CheckDomains
content: BrokerRequest

receive: DomainsChecked
content: AgentList

suchThat: NoAgentsMatch

do: setAgentList = null

Figure 27Broker to Ontology Conversation

63

Once the Ontology Agent has checked the domains it sends a DomainsChecked message

and returns a list of all useful agents for the given request values or a NoAgentsMatch message.

A NoAgentsMatch message implies none of the agents' domains are applicable to the original

data mining request.

The results, regardless of if the Ontology Agent was consulted, are sent back to the

requesting agent. If no agents were found, a NoAgentsFound message is returned. If there are

useful agent, then an AgentsFound message is sent and the agent list is included as the content.

Once the agent list is returned, the conversation is terminated.

4.5.6.2 Data Structures

The Broker Agent does not use any "new" data structures. First, it utilizes the Request

Class (see Section 4.5.4.2) for storing a request to pass on to the Ontology Agent. It also uses the

AgentList class (see Section 4.5.5.2) to store the list of agents currently in the system as well as to

store the agents that it found to fulfill a given function.

4.5.7 Ontology Agent

4.5.7.1 Conversations

The Ontology Agent interacts with the Broker and the Registration Agent. It is mainly

responsible for helping the Broker Agent determine what agents will be able to provide useful

association rules. The Broker Agent will initiate a conversation requesting that the Ontology

Agent check a list of Data Analysis Agents to see if the domain contains the X, Y or both values.

The Ontology Agent will receive a CheckDomains message with a list of agents as the content as

shown in Figure 28. It checks the list, then reports the results back to the Broker. If no agents

were found to be useful, then a NoAgentsMatch message is returned containing a null agent list.

64

If there are Data Analysis Agents that are useful, the Broker is informed with a DomainsChecked

message and passed the list of useful agents as the content.

Initiated by: Broker (Figure 27)

receive: CheckDomains
content: BrokerRequest

do: checkDomain suchThat: agentsExist
send: DomainsChecked

. , »■ . content: AgentsList ^

X bi) >
suchThat: noAgentsExist
send: NoAgentsMatch
content: null AgentsList

Figure 28 Ontology to Broker Conversation

The Ontology Agent must also be able to communicate with the Registration Agent to

receive new agent's domain information. This conversation (Figure 29) is initiated by a

NewAgent message that contains the new agent's full name and domain. The new agent's

information is taken from the message content, the global list of agents is updated and an

acknowledgement is sent to the Registration Agent. The acknowledgement is simply a message

entitled OntologyAdded. Once the message is sent, the conversation is terminated.

Initiated by: Registration (Figure 19)

do: addAgentToList send: OntologyAdded
receive: NewAgent ^_^ content: AgentsList
content: AgentMetaData / c \

Figure 29 Ontology to Registration Conversation

65

4.5.7.2 Data Structures

The Ontology Agent requires the same classes as the Broker Agent and does not

introduce any new requirements. It uses the AgentList (see Section 4.4.5.2) to maintain the

agents, their domains, and the Request class (see Section 4.5.4.2) to check the X and Y values

against the domain. The AgentList class (see Section 4.5.5.2) is also used to store the list of

agents passed to it by the Broker Agent.

4.5.8 Data Analysis Agent

4.5.8.1 Conversations

The Data Analysis Agent must interact with the Task Agent and the resource interface.

As mentioned in Section 4.4.6, the Data Analysis Agent encapsulates the resource interface and

data mining algorithm instance for efficiency. Because of this, there are no conversations

between the resource interface, data mining algorithm, and the Data Analysis Agent. Again, this

would add unnecessary overhead and delay an already lengthy data mining process. The Data

Analysis Agent awaits a BeginMining message from the Task Agent (Figure 30). The message

contains the original request as well. Once this is received, it starts the data mining algorithm

associated with it. When it is completed, it sends a MiningCompleted reply with the results as the

content.

Initiated by: Task Agent (Figure 23)

do: doMine suchThat: miningCompleted
receive: BeginMining ^_^^ smd. MiningCompleted
content: Request ^ { S \ content: Results

>l^J—: ►
Figure 30 Data Analysis to Task Agent

66

4.5.8.2 Data Structures

The Data Analysis Agent does not introduce any new data structures. It does use the

Request class (see 4.5.4.2) to hold the request passed to it by the Task Agent and the RulesList

(see 4.5.4.2) to hold all rules it has found through the data mining process.

4.5.9 Unification Agent

4.5.9.1 Conversations

The Unification Agent is utilized only at the very end of the entire process. It is

contacted only after all Data Analysis Agents have completed their respective mining operations.

The Task Agent will send a Unify message with all results in the content to the Unification Agent

(Figure 31). Once it receives the results, it performs the unification and returns the unified rules

as the content of a UnifyCompleted message. This is the only conversation in which the

Unification Agent engages.

Initiated by: Task Agent (Figure 24)

receive: Unify
content: ResultsList

do: doUnification suchThat: unifyCompleted
©send: UnifyCompleted

content: Results

Figure 31 Unification to Task Conversation

4.5.9.2 Data Structures

The Unification Agent must be able to accept the combined RuleLists (see 4.5.4.2) of all

Data Analysis Agents as well as pass back one unified list of rules. It uses the AllRules (see

67

4.5.5.2) class to store the combined RuleLists from the Task Agent, then uses the RulesList to

pass back the unified rules.

4.6 Detailed Agent Design

The final step in the methodology is to implement the algorithms that will allow each

agent to perform the functions specified in the previous steps. Each specific type of agent is a

subclass of the abstract Agent class with additional methods and structures identified as needed.

The specification of the methods is outlined for each agent type and any algorithms used are

specified.

Each agent will be discussed and the methods to be implemented shown and discussed.

The data structures required for passing messages have already been discussed for each agent in

Section 4.5. They will not be included again here as it would be redundant. Similarly, the

conversations are not included as they are specified in each subsection of 4.5. The performatives

expected and the method calls are shown for each conversation. The details of a conversation in

general are discussed in the next section and are applicable to all the agent conversations

4.6.1 Common Detailed Design Requirements

All agents must include implementations of the abstract methods specified in the

JAFMAS provided abstract Agent class. The following methods must be implemented in each

agent:

public abstract void startConversation(Object ob);

public abstract void addSubjects();

68

The addSubjects method adds multicast subjects or groups to which agents in the multi-

agent system can subscribe. In this research, the use of this was avoided for the reasons specified

in Section 4.4.4.1. Each agent will subscribe to a group known as ThesisNetwork. Additionally,

the startConversation method starts the conversation thread in the Task Agent depending upon

the message received. This is unique for each agent dependent on the conversations defined in

Section 4.5.

4.6.2 Agent Conversation Detailed Design

Each conversation is a subclass of the JAFMAS provided abstract Conversation class.

The only abstract method in this class is the initializeRules method. A rule defines a state

transition in the conversation diagrams shown throughout Section 4.4. Each rule is based on the

abstract ConvRule class and provides several methods that may be extended. The conversation

rule methods used in this research are the suchThat, setRecvdMessage, doBefore, doAfter,

fmdRecvdMsgmatch, and setTransmitMessage. Because there is a common rule for each

transition, how to construct the detailed conversation design from each diagram in Section 4.4 is

shown here once.

The first method is the suchThat method, this provides an initial transition test. It is

specified on the transition and must be true for the rule to fire. If it is not specified or if it is true,

the doBefore method is executed if it exists. This method typically calls any unique methods

internal to an agent. If the rule defines a new conversation with another agent, it is created and

started here. In the diagrams, this new conversation is shown in the start field. After this is

completed the findRecvdMessage method executes and checks for a message and extracts any

contents. It makes a call to setRecvdMessage that checks to see if the message contains the

appropriate performative. If not, the findRecvdMessage method fails and the rule fails. The value

69

expected by the setRecvdMessage is shown in the receive field of a transition. Any content to be

extracted by afindRecvdMessage method is shown in the content field. Finally, any messages to

be sent back is done so with a setTransmitMessage method. This is reflected in the diagram by a

transition with only a send value specified. In this way each conversation can be created and the

rules that define the conversation specified.

4.6.3 User Agent

In order to fulfill the tasks specified in Section 4.4.2, the User Agent must have several

methods. The agent must take a request from the external application and convert it to a

RequestClass object so it can be passed to the Task Agent. This is accomplished with a

setRequest method that simply takes in the values for confidence, support, and any X and Y

values and instantiates a variable of type RequestClass, assigning the values passed in to it.

In the agent's constructor it performs the standard start-up commands and then awaits a

Task Agent to enter the system. It makes a request to the Broker Agent for the name of an agent

that can fulfill the task of Task Agent and waits until an agent can be found. Because the User

Agent relies on a Task Agent's presence, when starting the system, the Task Agent should be

created prior to the User Agent.

The required method startConversation begins when a Task Agent has been found. It

awaits notification that a request has been made, then calls the setRequest method. Once the

request is set, it initiates the User to Task Conversation specified in Figure 20 and discussed in

Section 4.5.4.1. When the results are returned to the User Agent, it sets them to a local variable

through the setResultsList method. This ensures the values are stored in the case the external

application is not ready to accept the values or they are corrupted in transmission.

70

4.6.4 Task Agent

The role the Task Agent fills is discussed in Section 4.4.3. It must a initialize itself in

the constructor, then await a message from the User Agent. The startConversation method awaits

a new message, then begins the Task to User Conversation shown in Figure 21 and discussed in

Section 4.5.5.1.

Upon receipt of a request, it starts the Task to Broker Conversation. The result of this

conversation is a list of agents. If none exist, it is null and when the Task to Broker Conversation

ends, the Task to User Conversation rule checking for a null agent list fires and tells the User

Agent that no useful data sources exists and that conversation terminates. If there are useful

sources, the Task to User Conversation Rule to begin the Task to Data Analysis Conversations

fires. This passes the request to the Data Analysis Agents and awaits results. When results are

received the Task to Data Analysis Conversation ends and the Task to User Conversation Rule to

begin a Task to Unification Conversation fires. The Unification Agent unifies the results and

passes them back. Once received the results are sent to the User agent and the Task to User

Conversation Terminates.

Because the Task to User Conversation calls all other conversations, the data structures

being passed do not need to be set in the Task Agent itself. Instead the Task to User

Conversation class must implement the methods that set, store, and retrieve the values. These are

implemented with traditional get and set methods such as setResults.

4.6.5 Broker Agent

The Broker Agent must check to see if agents are in the system and meet some specific

criteria. To do this it must have several unique methods. When an agent is added to the system,

the Broker to Registration Conversation must add the agent information to the list of agents. This

71

is done through the addAgent method. This method simply performs an addElement to the

agentList.

The startConversation method must accept two possible messages to start either of its two

conversations. The first is an addAgentlnfo message that starts the Broker to Registration

Conversation (Figure 25). The second is a FindAgent request and should start the Broker to

Requesting Agent Conversation (Figure 26).

If an agent requests other agents with certain capabilities, the Broker to Agent

Conversation begins, receives the request, and must call methods that check the list for agents

fulfilling the request. This is done with the findAgents method. This method receives the type of

agent required, and searches the list of all agents for agents that can provide the task. Simply

looping through the array of agents, if a matching agent is found, it is added to an array of

matching agents.

If, based on the conversation rules, it is determined the Ontology Agent must be

contacted, the Broker to Agent Conversation must find the Ontology Agent. This is implemented

as findOntology and simply calls findAgents with Ontology as the type. It returns the name of the

Ontology Agent if one exists. The Broker does not require any other unique methods.

4.6.6 Ontology Agent

The Ontology Agent tasks are discussed in Section 4.4.5 and the conversations and data

structures are shown in Section 4.5.7. The Ontology Agent, like the Broker, has two possible

functions. First it must add an agent and its domain or check a list of agents' domains against a

particular request. The second conversation is the Ontology to Broker Conversation that takes a

list of agents and checks the domains of those agents against the original application request. In

order to do this, it must provide a checkDomains method that accepts an agentList and X and Y

72

values. It will simply loop through the agentList passed to it from the Broker, find each agent in

its agentList, then see if X or Y are in that agent's domain. If so, it is added to the

returnAgentList and passed back. The startConversation must be defined to accept either

message.

The first type of message the Ontology Agent can expect to receive is one with a

performative of addAgentlnfo. This will start the Ontology to Registration Conversation shown in

Figure 29. The only method needed in support of this is to add an agent and domain to the list of

system agents and their domains. This is accomplished with the addAgent method that simply

performs an addElement to the agentList array.

The other possible message that must be accounted for in startConversation is a message

with the checkDomains performative. As discussed above, this will come from the Broker Agent

and begins the Ontology Agent checking the list of agents and domains against the application

request.

4.6.7 Registration Agent

Because of the Registration Agent's role in the system (see Section 4.4.1) it must be

created first. Upon creation, it must ensure a Broker Agent is created as well. This can be

accomplished in the constructor and afindBroker method must be implemented. This method

should wait until a message is received on the ThesisNetwork stating the Broker has entered the

system. Once found, the Registration Agent can await new agents to enter.

The startConversation method should await only one type of message, the FindAgents

message. Once it is received, it begins the Registration to Agent Conversation shown in Figure

17. This conversation launches the Registration to Broker Conversation shown in Figure 18.

This conversation simply passes the agent information and does not require any new methods.

73

The only other method required is the findOntology method. If it is determined the

Ontology Agent must be contacted, the conversation needs to know the name of the Ontology

Agent from the Registration Agent. The Registration Agent can maintain this by checking each

registering agent type for ontology. Once the Ontology Agent registers, the Registration Agent

stores the name and returns it if findOntology is called.

4.6.8 Data Analysis Agent

As discussed in section 4.4.6, the Data Analysis Agent is simply a container agent for the

resource interface and data mining algorithm. The only unique method it must have is a

beginMining method that calls the doMine method of the mining algorithm.

One unique aspect of the Data Analysis Agent is the fact it holds a resource interface

instance and a mining algorithm instance. The constructor must take in these values, then assign

them to local variables so it has visibility to them. Additionally, the data mining algorithm must

have direct visibility to the resource interface and, when it is assigned, the Data Analysis Agent

must pass in a pointer to the resource interface. Once the initialization is done, startConversation

waits for a doMine message. Currently, the doMine message is the only message the Data

Analysis Agent can expect to receive. After the data mining algorithm is done, the Data

Analysis Agent passes the results back to the Task Agent.

4.6.8.1 Resource Interface

Currently, the resource interface is encapsulated in the Data Analysis Agent, and as such

it is covered as a subsection of the Data Analysis Agent. It does not have any explicit

conversations as the Data Analysis Agent handles all communication for it. It is an abstract class

that is manipulated through method calls from the data mining algorithm. This component will

74

be one of the components required when the system is extended and a new data source is added.

Because of this, special consideration must be given to making it as extensible as possible. The

class should define abstract methods for any methods a new resource interface must have to

ensure compatibility with the data mining algorithm. There are several requirements. First, it

must be able to return the domain of the data source for which it is responsible. In order to ensure

this, the abstract method readDomain must be implemented that reads the domain from the data

source. Because the each data source may store its domain differently or not at all, the resource

interface must know how to retrieve this. Each retrieval method may be implemented differently,

hence the abstract method choice.

The next method it must have is a nextTransaction method. As the mining algorithm

operates over the data source, it will need to have access to each transaction. Again, this is data

source dependent and is an abstract method. Each mining algorithm may need to make multiple

passes through the data source and as such should be able to start with the first transaction. In

order to ensure this interface is available an abstract resetDB method must be created. Finally, as

a data mining algorithm runs, it should be able to query the data source to determine if there are

any more transactions. To incorporate this, an abstract moreTransactions method is

implemented.

The abstract methods and the fact the resource interface is implemented as an abstract

class provides a great of flexibility. Each data source is accessed differently and if a resource

interface is instantiated, the implementations of the abstract methods allow data specific interface

code to be incorporated, while ensuring the data mining algorithm can communicate with it.

4.6.8.2 Data Mining Algorithm

The mining algorithm, like the resource interface, is encapsulated by the Data Analysis

Agent. It must be designed to be an extensible component as well, since it can be changed or

75

modified for any associated resource interface. It must be implemented as an abstract class for

many of the same reasons as the resource interface. First, the Data Analysis Agent in which the

algorithm is encapsulated must have a method that can be called to start the algorithm. This is

implemented with the abstract doMine method. When called by the Data Analysis Agent, this

method should start the algorithm operating over the data source.

Because the algorithm must make calls directly to the resource interface, it must be able

to have direct visibility to it. It maintains this visibility by storing the resource interface as a local

variable that is set through a setResource method. This is not an abstract method and is called by

the Data Analysis Agent to let the mining algorithm know the resource interface it will be

operating on.

The fact that this is an abstract class allows any methods required in the implementation

of a specific mining algorithm, to be added. It also ensures that the Data Analysis Agent can start

the algorithm running, no matter what specific implementation is used.

4.6.9 Unification Agent

The Unification Agent function is described in Section 4.4.7. As shown in Figure 30, the

Ontology Agent receives the lists of all results from the Task Agent. Once it receives this list, it

must perform the unification process. The startConversation method is implemented to recognize

that when a message is received, it launches the Ontology to Task Conversation, and extracts the

resultsList.

The main method called doUnify must first check all results to see if there are any

duplicates. If there are duplicates, it must unify all duplicate rules into one. This is done by

weighting each rule by the number of transactions that contained the X and Y values. This means

the higher the confidence and support, the more weight will be given to the support value found.

76

A rule from a data source that has extremely high confidence and support will have more

influence on the support and confidence level of the unified rule, as opposed to the same rule

generated from another source.

Several methods can be created to support the above algorithm. First, a

checkForDuplicates method will be implemented to check the results lists for all duplicate rules.

Duplicates are passed to the unification method that will look at confidence and total transactions

for each and provide a unified rule. Once the doUnify method is completed, it passes the

structure back to the Task Agent and awaits another message.

4.7 Summary

The application of the methodology specified in Chapter 3 allows a logical development

of the system that was described in this chapter. Starting with the problem and environment

analysis phase, the system and agents required were determined as shown in Figure 12. The

functions that each agent would be responsible for providing, the interactions that each required,

and the data structures utilized were then determined and discussed in detail. In accordance with

the methodology, a multi-agent development framework, JAFMAS, was selected. Finally,

detailed agent design was covered. While following a methodology allows a system to be built,

there are no guarantees that the system will solve the problem or functionality required. Poor

design decisions may affect performance or cause the system to not meet standards. Validation of

the features of this system is shown through implementation and validation of the extensible

features. Such an extension is discussed and performed in the next chapter.

77

V. Implementation

5.1 Overview

One of the goals of this architecture was to provide an extensible framework that could

more easily accept data sources of varying formats. This chapter outlines the features of the

architecture that make it extensible. It also shows this extensibility through an actual

implementation of a new data source. Section 5.2 discusses the features of the framework that

make this system extensible. Section 5.3 explains in more detail the agents that need to be

created and all classes that require modification or addition to incorporate a new data source. An

example of how DBMiner was extended is covered in detail in Section 5.4, showing the

implementation of the extension. It shows how, using just the abstract methods of the resource

interface and mining algorithm, results can be obtained.

5.2 Extensibility

In general, extensibility can be defined as the ease with which software can be modified

to adapt to new requirements or changes in existing requirements. In the case of this research, the

changing requirements are the number and formats of the data sources being mined. In order for

this to be an extensible system, new data sources, or requirements, should be able to be added

with relatively few changes or modifications to the system as a whole. One way this can be

accomplished is to re-use existing classes and data structures for the new data source. An

analysis of what changes or extensions are required to accommodate new data sources gives a

better look at the ease or difficulty of the task of adapting to the new requirements. Section 5.2.1

looks at what components (agents) are affected when new requirements are added and the

extensibility of those components.

78

5.2.1 Effects of New Requirements

When a new requirement is added, it must be assessed to determine all areas it may

impact. In the specific case of this system, the most common new requirement, as mentioned, is a

new data source. In order to add a new data source, one must look at how existing data sources

are incorporated in the system and attempt to incorporate the new source in the same manner,

ensuring all existing requirements for communication and interoperability are filled. The ease

with which the system allows this to happen can be effectively termed the extensibility of the

system.

In the current architecture, a single Data Analysis Agent controls each separate data

source. The Data Analysis Agent in-turn encapsulates and relies on an instance of a resource

class and an instance of a mining algorithm. Thus, in order to bring a new data source into the

system, a new Data Analysis Agent must be instantiated with the required components - a

resource interface and mining algorithm. It must also register with the system to ensure the other

agents are aware of its existence and that the data source can be utilized to fulfill system goals.

Looking at the system diagram in Figure 12, the only agents that could possibly be affected by a

new Data Analysis Agent are the Task Agents. However, the existing framework is designed to

handle the addition of a new requirement such as this without any changes.

First, we look at why no other agents are affected. In order for the new Data Analysis

Agent to become a part of the system, the Task Agent, Broker Agent, and Ontology Agent must

be aware it exists. The Task Agent is directly affected as it is responsible for tasking all useful

Data Analysis Agents in fulfilling a data mining request. The Broker Agent is responsible for

maintaining a list of all agents and the Ontology Agent maintains a list of all agents and then-

respective domains. The Broker and Ontology Agents are made aware of any new Data Analysis

Agent upon its registration (discussed next). Once they are aware of the addition, the Task Agent

79

is the only remaining agent affected. Every time a data mining request is made, the Task Agent

queries the Broker Agent for all useful agents. Once the new Data Analysis Agent is registered,

it becomes visible to the Task Agent, via the Broker, since the Task Agent does not maintain a

'memory' of Data Analysis Agents that are in the system between requests.

The registration of the new Data Analysis Agent has been made as easy as possible by

placing all common method implementations in the abstract Agent class. All code required to

register an agent is inherited by the abstract agent subclasses, which includes all Data Analysis

Agents. Registration then becomes a one line entry, this.register(), in the constructor of the

subclass. The Broker and Ontology Agents are notified of the presence through the registration

process. By reducing the otherwise complex registration process to one line we add a great deal

of extensibility. In fact, the Data Analysis Agent encapsulates all "changes" the rest are handled

automatically through the registration process.

5.3 Instantiating a New Data Analysis Agent

Because the Data Analysis Agent is a subclass of the abstract Agent class (see Figure 13),

it includes all the logic and methods that allow it to communicate within the system. It also, by

allowing any resource interface and mining algorithm to be encapsulated in it, gives the flexibility

to be used by any format data source. This format independence comes from the fact the Data

Analysis Agent acts only as an interface to the Task Agent to receive requests and pass back

results. The resource and mining components contain any format specific code. Because of this,

the only code required to create a new Data Analysis Agent and 'introduce' a new data source

becomes a one line instantiation as shown below:

agent = new DataAnalysis(name, represents, subscribeTo, res, alg);

In the instantiation, 'name' is a string representing a unique name in the system. The

'represents' field is a list of all tasks the agent can perform and is set to "Data_Analysis". The

80

'subscribeTo' parameter allows the agent to subscribe to any "group" of agents within the system.

This research does not define any specific groups aside from the overall system. The ''res' and

'alg' are the chosen Resource interface and data mining algorithm. Currently, these values are all

set through a graphical user interface but can be set manually as well.

This ease of instantiation provides extensibility to allow any data source of any format to

exist in the system. Unfortunately, simply instantiating a Data Analysis Agent does allow a new

data source to be mined, it only allows the system have visibility to the data source. Any format-

specific code is included in the resource interface and mining components that comprise the Data

Analysis Agent. These aspects are discussed in the following two subsections.

5.3.1 Resource Interface

The resource interface is the first facet in adding the new data source. This agent

contains all code required to interface with the data source. It also must also include the standard

interfaces to communicate with the Data Analysis Agent that encapsulates it, as well as the data

mining algorithm that will operate over it.

In order to ensure all new resource interfaces can communicate in the system, an abstract

resource interface class was created. Any new class must extend this abstract class and

implement the abstract methods it includes. It is important to note that the abstract Resource class

is not a subclass of the abstract Agent class. Because the Data Analysis Agent, who includes all

required methods for communication, encapsulates it, the resource interface does not need to

communicate with any other agents. It will receive all information it requires from either the

Data Analysis Agent or the data mining algorithm that operates over it.

The abstract Resource class also includes several abstract methods that any subclasses

must implement. This was done to ensure a common interface for the data mining algorithm

81

class to operate across, independent of the data source format. The interface specifications for the

required abstract methods are shown below:

public abstract boolean moreTransactions();
public abstract Vector nextTransaction();
protected abstract void readDomain(String db);
protected abstract void resetDB(String db);

These methods reflect the fact any new data source will most likely be transaction-

oriented. Currently, while useful data may be extracted from other types of data sources, PESKI

and BKB's require connections from transaction-oriented sources. If, at some time in the future,

other classes of data sources needed to be added, this abstract class could be modified.

It is important to note that these abstract classes do not ensure or provide any

optimizations in the data mining process. Any subclass can include any other methods or

algorithms that would provide the optimizations needed or desired for particular data sources.

Because optimizations, and often data mining algorithms, are format specific, these classes allow

for any new methods or logic to be implemented, while retaining the ability to communicate with

the system through the parent Data Analysis Agent.

The keys to extensibility in the Resource class are the flexibility for expansion and format

specific optimizations, while enforcing the minimum system-specific method implementation

possible.

5.3.2 Mining Algorithm

The other key component, the mining algorithm, operates in much the same framework

as the abstract Resource class. It is encapsulated by the Data Analysis Agent, and as such, has

required interface methods any instantiation must contain to communicate in the system.

82

It is important to note here that it is the mining algorithm class that must have visibility to

the resource interface it will be operating over. This is because the Resource class is purely query

oriented - it only answers queries made to it. It does not initiate any communication with any

other agents or components of the parent Data Analysis Agent. The mining algorithm class can

expect, at a minimum to have visibility to the resource methods discussed in subsection 5.3.1.

Again, the mining algorithm class was made an abstract class for many of the same

reasons as the Resource class. It must have certain methods and interfaces to allow the standard

Data Analysis Agent to communicate with it. It also must allow for the data mining algorithm

and any optimizations to be included as well. Because the algorithms themselves can be coded a

variety of ways, abstract methods that would force a particular processing of the data were not

included. The abstract methods included are shown below:

public abstract ResultsList doMine(RequestClass req, Vector rules);

The abstract doMine class allows the Data Analysis Agent to begin mining in response to

a request from the Task Agent. It expects a list of results in the form of ResultsList to be returned

so that it may return them to the Task Agent, indicating completion.

5.4 Actual Implementation

In order to better show how the system can be extended, this section details how a new

data source was actually added and the code that was required to make the addition. There are

three key portions of the extension that must be accomplished. They are the new data source, the

data mining algorithm, and the resource interface. This also shows how a resource interface and

mining algorithm can perform data mining using the minimal set of methods required. Each of

these is covered below and any extensions required are shown and discussed.

83

5.4.1 New Data Source

The new data source contains transaction-oriented data related to a typical grocery store

transaction environment. It is a flat-file type database that includes five random variables. The

data source contains one transaction per line, as shown below:

cereal pop-tarts soda.

This indicates a transaction in which cereal, pop-tarts, and soda were purchased together. The

domain is specified as the first line of the file and contains "milk chips cereal pop-tarts soda".

Currently the data source has 20,000 transactions, all in the specified format. There were no

current Java methods available to interface with the file since it is in a proprietary format.

5.4.2 Creating a Resource Interface

The creation of the resource interface was performed first. As mentioned before, the

resource interface must be a subclass of the abstract Resource class. As such, it must contain

implementations of the abstract methods in the Resource class. It also must contain the methods

required to interface with the new data source type. All the required methods deal with the data

format specific access of the new source. It must first be determined how access will be done.

There are several options - existing API's, ODBC calls, proprietary interface, or other means.

Because the data source being added is a proprietary format, a new proprietary interface was

developed. This involved using native Java code to read the flat-file. If an API or existing

interface shell existed, this could be utilized by coding the queries to fulfill the request of each

abstract method. Java does provide support for ODBC and JDBC calls.

The first issue was how to read the domain or extract it from the data source. In this case,

the domain was included as the header of the file. Thus for the required method readDomain, the

first line is read and broken into tokens, or random variables, then each random variable is

assigned to an element of the domain array.

84

This was accomplished by first attempting to open the data source for reading and, if

successful, begin reading. If not successful, it catches the error and the domain remains null. The

method uses StringTokenizer, a Java call that automatically breaks a string into as many tokens as

exist, to individually add each domain variable to the domain list.

The next method implemented was the nextTransaction abstract method. This method

passes back a transaction, presumably in a specific order. The only requirement was that it reads

all transactions once, and only once, unless the data source is reset. In a flat-file such as the one

being used, this was done by simply keeping the file open, reading a line, breaking the line into

tokens and passing them back to the calling method in the form of an array. The only

optimization here was to actually pre-read a block of transactions and maintain the list in

memory. The nextTransaction code reads a block whenever there are less than 10 records in

memory. The readTransactionBlock supports the nextTransaction in fulfilling the abstract

method requirement. This also reflects the ability to add new methods for particular data source

formats.

This readTransationBlock operates in much the same fashion as the readDomain method.

It reads a line from the database and parses it into a transaction. It is important to note the

absence of a closeO statement. The file is left open to ensure that after a line is read, the file

record pointer points to the next line. If the file were closed and re-opened a read line command

would read the first line of the data source. This does not fulfill the requirement to read all

transactions once and only once.

The resetDB method implementation was the easiest to fulfill. This was called to set the

data source pointer back to the top. No matter where the nextTransaction pointer is, if resetDB is

called, it should go back to the first transaction. In this case, this was accomplished by simply

closing the data source and then reopening it.

85

The final 'mandatory' method implemented was the moreTransactions method. This

method simply returns a True or False to reflect if there are any more transactions in the data

source (based on the current transaction pointer). This was made easier since the resource class

was 'looking ahead' at transactions. Thus if it attempts to read a block of 100 and can only read

50, it knows that after there are no more transactions in the database after the 50th. If this occurs,

the readTransactionBlock method sets the noMoreTrans variable to true, indicating the end of the

transactions. The moreTransactions method only needs to see what element the nextTransaction

is currently at, along with the noMoreTrans variable. This ensures the data mining algorithm

knows when the data source transactions are exhausted.

This extension implements all of the required abstract methods listed below:

public abstract boolean moreTransactions();
public abstract Vector nextTransaction();
protected abstract void readDomain(String db);
protected abstract void resetDB(String db);

These were the only methods that had to be implemented in order create a new resource

class.

5.4.3 Data Mining Algorithm

The last component change required to incorporate a new data source is to implement a

new data mining. In general, any data mining algorithm can be coded to operate across any data

source. However, there are algorithms that operate more efficiently over particular data formats.

It is in the encoding of an algorithm that the dependencies to a data format are generally

introduced. The general algorithm being used for this extension is shown below:

Generate 1-item frequent itemsetfrom Data Source
While previous Freq Itemset is not empty

Generate possible large itemsets based on the previous itemset
Call resetDBfrom resource interface
While the data source has more transactions (from resource interface)

86

Generate all possible subsets from the next transaction
Add subsets to the list of potential frequent items sets

Prune out all subsets not meeting minimum support and confidence levels
While list of potential frequent item sets is not empty

Generate all possible rules for each item set

This algorithm uses only the required abstract methods from the resource interface. The

resetDB is used in step 4, moreTransactions method is utilized in step 5, and finally

nextTransaction in step 6. Making just these calls, the data mining algorithm can get all the

information it needs

There was just one required method that had to be implemented when extending the

abstract MiningAlgorithm class - the doMine method, which initiates the algorithm described

above.

5.5 Summary

The architecture developed in this thesis was validated by implementating it and

demonstrating that it fulfills the requirements set out in the problem statement of Chapter 1. This

chapter showed how to extend the system through adding a new data source. It described the

features of the system that make it extensible and then detailed the actual changes necessary to

incorporate new requirements. Addition of a new data source requires a new Data Analysis

Agent to be introduced into the system. The registration process ensures all existing agents get

visibility to the new agent once it registers. The new Data Analysis Agent must contain a

resource interface to access the new data source and a mining algorithm to operate over the data

source. Both are subclasses of abstract classes that enforce minimum required methods for

interaction with each other and the encapsulating Data Analysis Agent. A new data mining

algorithm was incorporated using only those abstract methods made available by the base classes.

This extension demonstrated that a data mining algorithm can perform the its task given the

minimal set of methods required of the resource interface. The relative simplicity with which the

87

new data source was added reflects the extensibility of the system, one of the goals of this

research.

88

VI. Results and Conclusion

6.1 Overview

There are many arguments for databases of one format or another. The debate on which

format to use may not soon be settled. The usefulness of the actual data within the various

databases remains of interest, however. In particular, extracting associations between different

elements of the domain can help with marketing, trend analysis, and in support of filling

incompleteness in a Bayesian Knowledge Base. Multi-Agent systems have been used to

successfully access heterogeneous databases in response to user queries.

This research shows how a multi-agent system can be used to perform the time intensive

data mining process over heterogeneous sources. It also provides an extensible architecture that

allows data sources of any format to be added and mined. Results from each data source are then

unified, presenting one set of unique association rules back to the application that requested the

data mining. This was accomplished by first developing a methodology for designing a multi-

agent and then applying it to the problem. Finally the architecture was extended to include a new

format data source. This chapter looks at what this research accomplished, along with the new

and unique contributions, as well as what was not implemented. It concludes by overviewing

some of the future work that could be done using this system as a basis.

6.2 Results

The system was run using two different operating systems, Windows NT 4.0, and Sun

Solaris. First, the registration agent was started on the NT machine. The broker was then created

on the Sun machine. The other agents were created on each of the machines are follows: on the

NT machine, the User, Ontology and Unification Agents were created; on the Sun machine, the

89

Task and Data Analysis Agents were created. Two runs were then made so results could be

compared.

The first run involved one data source. It was mined for all possible association rules

with token levels of support and confidence. The data source contained only 5000 transactions

and 38 rules were generated as a result of the mining. The rules were then passed to the

Unification Agent which returned the same group of 38 rules. This indicates that no

discrepancies or redundancies were found.

The second run involved performing the same data mining request over two data sources.

The first source was the original source of 5000 records, and the second was the new data source

described in Chapter 5 of 20,000 records. The same levels of support and confidence were used

for this run as were used in the first run. In this case the first data source returned the same 38

rules and the new data source returned 53 rules. The rules were then passed to the Unification

Agent which returned a unique set of 42 rules. This indicates there was some redundancy and

discrepancies in the lists returned by each data source. The support and confidence levels of

several of the rules were different as well. This indicates that when the rules were redundant, the

levels of support and confidence were different. With the current Unification Agent, the second

data source would have more influence over the results as it has more transactions.

6.3 Accomplishments

This research accomplished most of the goals set out in Chapter 1, and made some new

and unique contributions as well. First, although not required in the problem statement, a

methodology was created to provide a logical means for developing a multi-agent,

communication-centric system. This methodology followed a five-step approach modeled after

object-oriented design methods and was created because there were no existing methodologies

90

appropriate for this problem. While it cannot aid in the critical decision of whether to use agents

or not, it can be applied once the decision has been made to develop a multi-agent system.

One of the main goals of this research was a multi-agent system that performs data

mining over data sources of heterogeneous formats. This was accomplished with the extensible

broker-centric multi-agent system specified in Chapter 4. Not only can this system be used for

this problem, but it is extensible enough to be re-used for other systems as well. It extends the

generic Agent to allow for a "registration" process and provides conversations for communicating

with a Broker to determine other useful agents.

Third, the system provides an architecture that can be extended to include any format of

data source format. Previous work had only implemented data mining for one specific data

source without providing extensibility. This research not only introduced another format, but also

provided an entire agent system for allowing as many formats as are desired. The extensibility

was shown through an actual implementation of a new data source as outlined in Chapter 5.

Finally, several agents were created and integrated that, although they were not required,

were beneficial or entirely new in the agent community. First, although the Ontology and

Registration Agents were not required by the system to function, they do provide optimizations

and allow for future expansion. The Ontology Agent was implemented to trim the workload to

only those sources that may be useful. This is particularly useful in an environment where

resources are tight or not readily available. It also allows for future expansion into other domain-

related areas that could provide optimizations, such as semantic interpretation of domain

variables. The Registration Agent was not required but implemented as an optimizing feature. It

allows one single point of entry for all new agents and can get all required information, as

opposed to individual agents determining what information is needed and passing bandwidth

consuming and possible redundant messages to new agents.

The Unification Agent is a new agent created for this research and has not been presented

in any of the reviewed literature to date. This unique agent uses heuristics to eliminate redundant,

91

conflicting, or uninteresting rules after data mining has been done. Although the current

heuristics are of a simple nature, they could be expanded and refined to become more useful.

Again, this is a new area of research in the Agent community that was created for this problem.

6.4 Work Not Implemented

The goals of the problem were extremely optimistic and some of the features were not

implemented, largely due to time constraints. First, the system was intended to interface with

PESKI in order to receive the data mining request. Currently that interface is not implemented in

the system. The User Agent has been implemented and the interface would simply be a method

in it. It should use the existing communication channels utilized by DBMiner. By reusing this

channel, PESKI does not require modification.

One other feature not implemented is the use of the cancel command to stop all work in

progress and immediately report any results. Typically this would be a user generated request

that would filter through the agent system causing any current mining operations to cease. This

could be implemented by expanding the existing conversations to recognize the cancel command

and issuing stop commands to appropriate agents.

6.5 Future Work

Like most agent systems, there is the possibility for future expansion. There are several

key areas that could be expanded or optimized. The first is the interface to PESKI. The interface

was not implemented in the course of this work and needs to be coded. The next area is the

Ontology Agent. Currently there is no semantic meaning applied to the domain variables the

Ontology Agent maintains. If it is queried it performs a simple search of the domain for an agent

to see if it matches. This does not take into account the various uses of any word or domain

92

variable. For instance, smoke may be used in reference to smoking in a medical database, but

also in a database about forest fires. In is unlikely someone looking for trend data is interested in

data from both sources.

Another possible area of work also involves the control and selection of data sources.

The introduction of a monitor agent would be very useful. Such an agent can observe the actions

and results of mining requests, as well as whether or not the user incorporates results into a BKB.

By assessing this data, a monitor agent can return valuable information about each data source

and the data mining algorithm that operates over it. Algorithms that consistently take excessive

time and return unused results can be identified and changed or eliminated. If a new data source

is added, the monitor agent may be able to provide recommendations as to what mining algorithm

may be effective for the source based on its format.

Another extension can be the introduction of a 'trusted data source' identifier. Each user

in PESKI has a profile that includes information about the users' habits. Evaluating the patterns

of data sources selected or by user specification, a data source can be more trusted than others and

its results may carry more weight in unification.

One final area of future work is the heuristics utilized by the Unification Agent. The

Unification Agent currently uses a naive algorithm of assigning weights based on total number of

records. This algorithm can be evaluated and changed based on inputs from the user inclusion of

results, a monitor agent, or trusted sources. Unification is a critical area and other, possibly more

valid or useful methods should be investigated.

6.6 Summary

The problem presented in Chapter 1 allows a great deal of freedom in the choice of

solution. Chapter 2 reviewed the literature that is available in the field of data mining, agents,

agent development frameworks, and information gathering systems. The methodology presented

93

in Chapter 3 can be reused for other communication centric multi-agent systems and is just one of

the useful products. Chapter 4 presented a system that not only utilized agent technology, but

developed it in a manner that made it extensible and reusable. The introduction of the concept of

a Unification Agent is a new and unique idea for data mining systems. Finally, the system was

validated by extending it to include another format data source and showing the ease of

extensibility, and use of the unification agent.

94

Bibliography

[AGRA96] Agrawal, Rakesh, et. al. "Fast Discovery of Association Rules" Advances in
Knowledge Discovery and Data Mining. AAAI/MIT Press. Chapter 12, 307-328.

[ACHK93] Arens, Yigal, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock
Retrieving and Integrating Data from Multiple Information Sources.
International Journal of Intelligent and Cooperative Information Systems. Vol. 2,
No. 2. Pp. 127-158, 1993.

[AS94] Agrawal, Rakesh and Ramakrishnan Srikant "Fast Algorithms for Mining
Association Rules." September 1994 Proceedings of the 20th Very Large Data
Bases Conference, Santiago, Chile 487 - 499.

[BAY96] Bayardo, R. et. al. "Semantic Integration of Information in Open and Dynamic
Environments" MCC Technical Report, MCC-INSL-088-96, 1996.

[BRAD97] Bradshaw, Jeffrey "Software Agents" J. Bradshaw ed., AAAI/MIT Press, Menlo
Park, CA 1997.

[CHAU97] Chauhan, Deepika "JAFMAS: A Java-based Agent Framework for Multiagent
Systems Development and Implementation", ECECS Department, University of
Cincinnati, 1997

[FU95] Usama M. Fayyad, Ramasamy Uthurusamy (Eds.): August 20-21, 1995
Proceedings of the First International Conference on Knowledge Discovery and
Data Mining (KDD-95), Montreal, Canada, AAAI Press.

[JAF97] JAFMAS, Comparison of JAFMAS to other Java-Based Agent tools,
http://www.ececs.uc.edu/~abaker/JAFMAS/tab2.html, University of Cincinnati,
1997.

[JAT97] JATLite, JATLite Overview, http://java.stanford.edu/java_agent/html/, Stanford
University, 1997.

[MHIP95] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and
Jennifer Widom. "Integrating and Accessing Heterogeneous Information Sources
in TSIMMIS". In Proceedings of the AAAI Symposium on Information
Gathering, pp. 61-64, Stanford, California, March 1995..

[HNFD98] J. J. Han, R. T. Ng, Y. Fu, and S. Dao, " Dealing with Semantic Heterogeneity
by Generalization-Based Data Mining Techniques", M. P. Papazoglou and G.
Schlageter (eds.), Cooperative Information Systems: Current Trends &
Directions , Academic Press, 1998, pp. 207-231.

[KA97] Knoblock, Craig A. and Jose Luis Ambite "Agents for Information Gathering" J.
Bradshaw ed., AAAI/MIT Press, Menlo Park, CA, 1997.

95

[KAH94] Knoblock, Craig A., Yigal Arens, and Chun-Nan Hsu "Cooperating Agents for
Information Retrieval" Proceedings of the Second International Conference on
Cooperative Information Systems, Toronto, Ontario, Canada, University of
Toronto Press, 1994

[NWA96] Nwana, Hyacinth S. "Software Agents: An Overview" Knowledge Engineering
Review, Vol. 11, No 3, pp.1-40, Sept 1996.

[SHOH97] Shoham, Y. "An Overview of Agent-oriented Programming" J.M Bradshaw (ed),
Software Agents, AAAI Press, 1997.

[SING98] SING98, Narinder "Unifying Heterogeneous Information Models" May 1998
Communications of the ACM, Vol. 41, No. 5. 37-44.

[SRHC97] Srikant, Ramakrishnan, Quoc Vu, and Rakesh Agrawal "Mining Association
Rules with Item Constraints" August 1997 Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining, Newport
Beach, California. 67-73.

[SA96] Srikant, Ramakrishnan, and Rakesh Agrawal "Mining Quantitative Association
Rules in Large Relational Tables" June 1996 Proceedings of the ACM SIGMOD
Conference on Management of Data, Montreal, Canada.

[SA95] Srikant, Ramakrishnan, and Rakesh Agrawal " Mining Generalized Association
Rules" 1995 Proceedings of the 21st Very Large Database Conference, Zurich,
Switzerland. 407-419.

[STEIN96] Stein, Daniel J. UJ. " Utilizing Data and Knowledge Mining For Probabilistic
Knowledge Bases" MS Thesis AFIT/GCS/ENG/96D-25. Graduate School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH,
December, 1996.

[WT95] Woelk, Darrell, and Christine Tomlinson. "InfoSleuth: Networked Exploitation
of Information using Semantic Agents" COMPCON, March, 1995.

[WJ95] Wooldridge, M. and Jennings, N. "Intelligent Agents: Theory and Practice",
Knowledge Engineering Review Volume 10 No 2, June 1995, Cambridge
University Press.

96

Vita

Captain Christopher G. Marks was born 27 July 1972 in Westfield, Massachusetts. He

graduated from Waynesboro Senior High School, Waynesboro, Pennsylvania in 1990. He was

accepted into and attended the United States Air Force Academy in 1990. He graduated in 1994

after completing a Bachelor of Science degree in Computer Science. After completing the Basic

Computer Officer Training, his first assignment was the Standard Systems Group at Maxwell-

Gunter AFB, Alabama, where he was a network engineer for the Base-Level Systems

Modernization (BLSM) program. While still in Alabama, he became the program manager for

the Transmission Monitor and Control System (TRAMCON) and the Digital Patch and Access

System (DPAS). He remained in Alabama until August of 1997, when he began attending the Air

Force Institute of Technology.

97

